On the number of additional edges of a~minimal vertex 1-extension of a~starlike tree
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 2, pp. 103-113

Voir la notice de l'article provenant de la source Math-Net.Ru

For a given graph $G$ with $n$ nodes, we say that graph $G^*$ is its 1-vertex extension if for each vertex $v$ of $G^*$ the subgraph $G^*-v$ contains graph $G$ up to isomorphism. A graph $G^*$ is a minimal vertex 1-extension of the graph $G$ if $G^*$ has $n+1$ nodes and there is no 1-vertex extension with $n+1$ nodes of $G$ having fewer edges than $G^*$. A tree is called starlike if it has exactly one node of degree greater than two. We give a lower and upper bounds of the edge number of a minimal vertex 1-extension of a starlike tree and present trees on which these bounds are achieved.
@article{ISU_2012_12_2_a14,
     author = {M. B. Abrosimov},
     title = {On the number of additional edges of a~minimal vertex 1-extension of a~starlike tree},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {103--113},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a14/}
}
TY  - JOUR
AU  - M. B. Abrosimov
TI  - On the number of additional edges of a~minimal vertex 1-extension of a~starlike tree
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 103
EP  - 113
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a14/
LA  - ru
ID  - ISU_2012_12_2_a14
ER  - 
%0 Journal Article
%A M. B. Abrosimov
%T On the number of additional edges of a~minimal vertex 1-extension of a~starlike tree
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 103-113
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a14/
%G ru
%F ISU_2012_12_2_a14
M. B. Abrosimov. On the number of additional edges of a~minimal vertex 1-extension of a~starlike tree. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 2, pp. 103-113. http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a14/