Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2012_12_2_a14, author = {M. B. Abrosimov}, title = {On the number of additional edges of a~minimal vertex 1-extension of a~starlike tree}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {103--113}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a14/} }
TY - JOUR AU - M. B. Abrosimov TI - On the number of additional edges of a~minimal vertex 1-extension of a~starlike tree JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2012 SP - 103 EP - 113 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a14/ LA - ru ID - ISU_2012_12_2_a14 ER -
%0 Journal Article %A M. B. Abrosimov %T On the number of additional edges of a~minimal vertex 1-extension of a~starlike tree %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2012 %P 103-113 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a14/ %G ru %F ISU_2012_12_2_a14
M. B. Abrosimov. On the number of additional edges of a~minimal vertex 1-extension of a~starlike tree. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 2, pp. 103-113. http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a14/
[1] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., 25:9 (1976), 875–884 | DOI | MR | Zbl
[2] Harary F., Hayes J. P., “Node fault tolerance in graphs”, Networks, 27 (1996), 19–23 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[3] Harary F., Hayes J. P., “Edge fault tolerance in graphs”, Networks, 23 (1993), 135–142 | DOI | MR | Zbl
[4] Harary F., Khurum M., “One node fault tolerance for caterpillars and starlike trees”, Intern. J. Comput. Math., 56 (1995), 135–143 | DOI | Zbl
[5] Kabanov M. A., “Ob otkazoustoichivykh realizatsiyakh grafov”, Teoreticheskie zadachi informatiki i ee prilozhenii, 1, Saratov, 1997, 50–58 | MR
[6] Abrosimov M. B., “Minimalnye rasshireniya grafov”, Novye informatsionnye tekhnologii v issledovanii diskretnykh struktur, Tomsk, 2000, 59–64
[7] Abrosimov M. B., Komarov D. D., Minimalnye vershinnye rasshireniya sverkhstroinykh derevev s malym chislom vershin, Dep. v VINITI 18.10.2010, No 590-V2010, Sarat. gos. un-t, Saratov, 2010, 38 pp.
[8] Abrosimov M. B., “O slozhnosti nekotorykh zadach, svyazannykh s rasshireniyami grafov”, Mat. zametki, 88:5 (2010), 643–650 | DOI | MR | Zbl
[9] Abrosimov M. B., “O nizhnei otsenke chisla reber minimalnogo rebernogo 1-rasshireniya sverkhstroinogo dereva”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 11:3, ch. 2 (2011), 111–117
[10] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, M., 1997, 368 pp. | MR | Zbl
[11] Abrosimov M. B., “Minimalnye rasshireniya neorientirovannykh zvezd”, Teoreticheskie problemy informatiki i ee prilozhenii, 7, Saratov, 2006, 3–5