Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2012_12_2_a10, author = {V. A. Kovalev and Yu. N. Radayev}, title = {Upper and low bounds of azimuthal numbers related to elementary wave functions of an elliptic cylinder}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {68--81}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a10/} }
TY - JOUR AU - V. A. Kovalev AU - Yu. N. Radayev TI - Upper and low bounds of azimuthal numbers related to elementary wave functions of an elliptic cylinder JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2012 SP - 68 EP - 81 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a10/ LA - ru ID - ISU_2012_12_2_a10 ER -
%0 Journal Article %A V. A. Kovalev %A Yu. N. Radayev %T Upper and low bounds of azimuthal numbers related to elementary wave functions of an elliptic cylinder %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2012 %P 68-81 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a10/ %G ru %F ISU_2012_12_2_a10
V. A. Kovalev; Yu. N. Radayev. Upper and low bounds of azimuthal numbers related to elementary wave functions of an elliptic cylinder. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 2, pp. 68-81. http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a10/
[1] Mathieu E., “Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique”, J. des Mathématiques Pures et Appliquées, 13 (1868), 137–203
[2] Radaev Yu. N., Taranova M. V., “Svyazannoe volnovoe termouprugoe pole v dlinnom volnovode ellipticheskogo poperechnogo secheniya”, Vestn. ChGPU im. I. Ya. Yakovleva. Ser. Mekhanika predelnogo sostoyaniya, 2011, no. 1(9), 183–196
[3] Kovalev V. A., Radaev Yu. N., Volnovye zadachi teorii polya i termomekhanika, Izd-vo Sarat. un-ta, Saratov, 2010, 328 pp.
[4] Strett M. D. O., Funktsii Lame, Mate i rodstvennye im v fizike i tekhnike, Gos. nauch.-tekhn. izd-vo Ukrainy, Kharkov–Kiev, 1935, 240 pp.
[5] Mak-Lakhlan N. V., Teoriya i prilozheniya funktsii Mate, Izd-vo inostr. lit., M., 1953, 476 pp.
[6] Sansone Dzh., Obyknovennye differentsialnye uravneniya, v 2 t., v. 1, Izd-vo inostr. lit., M., 1953, 348 pp. | MR
[7] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1958, 476 pp.
[8] Arscott F. M., Periodic differential equations: An introduction to Mathieu, Lamé, and allied functions, Pergamon Press, Oxford–Frankfurt, 1964, X+284 pp. | MR | Zbl
[9] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979, 832 pp. | MR
[10] Kampe de Fere Zh., Kempbell R., Peto G., Fogel T., Funktsii matematicheskoi fiziki, spravochnoe rukovodstvo, Fizmatgiz, M., 1963, 104 pp.
[11] Naimark M. A., Lineinye differentsialnye operatory, Gostekhteoretizdat, M., 1954, 352 pp.
[12] Marchenko V. A., Spektralnaya teoriya operatorov Shturma–Liuvillya, Nauk. dumka, Kiev, 1972, 220 pp. | MR | Zbl
[13] Levitan B. M., Sargsyan I. S., Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988, 432 pp. | MR | Zbl
[14] Gantmakher F. R., Teoriya matrits, Gostekhteoretizdat, M., 1953, 492 pp.
[15] Uilkinson Dzh. Kh., Algebraicheskaya problema sobstvennykh znachenii, Nauka, M., 1970, 564 pp.
[16] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1969, 368 pp. | MR
[17] Lankaster P., Teoriya matrits, Nauka, M., 1978, 280 pp. | MR
[18] Markus M., Mink Kh., Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972, 232 pp. | MR
[19] Ostrowski A. M., “Über die Determinanten mit überwiegender Hauptdiagonale”, Commentarii Mathematici Helvetici, 10 (1937), 69–96 | DOI | MR | Zbl