Upper and low bounds of azimuthal numbers related to elementary wave functions of an elliptic cylinder
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 2, pp. 68-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical and analytical aspects of generating $2\pi$-periodic solutions of the angular Mathieu equation obtained for the circumferential harmonics of an elliptic cylinder and localization problem for the Mathieu eigenvalues and corresponding azimuthal numbers are considred. Those are required in usual procedure of constructing the elliptic cylinder elementary wave functions playing a very important role in mathematical physics. The Sturm–Liouville eigenvalue problem for angular Mathieu equation is reformulated as the algebraic eigenvalue problem for a infinite linear self-adjoint pentadiagonal matrix operator acting in the complex bi-infinite sequence space $l_2$. The matrix operator then can be splitted into a diagonal matrix and a infinite symmetric doubly stochastic matrix. Simple algorithms aimed at computation of the Mathieu eigenvalues and associated angular harmonics are discussed. The most symmetric forms and equations mostly known from the contemporary theory of the Mathieu equation are systematically used. Some of them are specially derived for the case and seem to be new in the theory of the angular Mathieu equation. An extension of the azimuthal numbers notion to the case of elastic and thermoelastic waves propagating in a long elliptic waveguide is proposed. Estimations of upper and low bounds for the angular Mathieu eigenvalues and azimuthal numbers are obtained by the aid of the Gerschgorin theorems and more accurate ones by the Cassini ovals technique.
@article{ISU_2012_12_2_a10,
     author = {V. A. Kovalev and Yu. N. Radayev},
     title = {Upper and low bounds of azimuthal numbers related to elementary wave functions of an elliptic cylinder},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {68--81},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a10/}
}
TY  - JOUR
AU  - V. A. Kovalev
AU  - Yu. N. Radayev
TI  - Upper and low bounds of azimuthal numbers related to elementary wave functions of an elliptic cylinder
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 68
EP  - 81
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a10/
LA  - ru
ID  - ISU_2012_12_2_a10
ER  - 
%0 Journal Article
%A V. A. Kovalev
%A Yu. N. Radayev
%T Upper and low bounds of azimuthal numbers related to elementary wave functions of an elliptic cylinder
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 68-81
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a10/
%G ru
%F ISU_2012_12_2_a10
V. A. Kovalev; Yu. N. Radayev. Upper and low bounds of azimuthal numbers related to elementary wave functions of an elliptic cylinder. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 2, pp. 68-81. http://geodesic.mathdoc.fr/item/ISU_2012_12_2_a10/

[1] Mathieu E., “Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique”, J. des Mathématiques Pures et Appliquées, 13 (1868), 137–203

[2] Radaev Yu. N., Taranova M. V., “Svyazannoe volnovoe termouprugoe pole v dlinnom volnovode ellipticheskogo poperechnogo secheniya”, Vestn. ChGPU im. I. Ya. Yakovleva. Ser. Mekhanika predelnogo sostoyaniya, 2011, no. 1(9), 183–196

[3] Kovalev V. A., Radaev Yu. N., Volnovye zadachi teorii polya i termomekhanika, Izd-vo Sarat. un-ta, Saratov, 2010, 328 pp.

[4] Strett M. D. O., Funktsii Lame, Mate i rodstvennye im v fizike i tekhnike, Gos. nauch.-tekhn. izd-vo Ukrainy, Kharkov–Kiev, 1935, 240 pp.

[5] Mak-Lakhlan N. V., Teoriya i prilozheniya funktsii Mate, Izd-vo inostr. lit., M., 1953, 476 pp.

[6] Sansone Dzh., Obyknovennye differentsialnye uravneniya, v 2 t., v. 1, Izd-vo inostr. lit., M., 1953, 348 pp. | MR

[7] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1958, 476 pp.

[8] Arscott F. M., Periodic differential equations: An introduction to Mathieu, Lamé, and allied functions, Pergamon Press, Oxford–Frankfurt, 1964, X+284 pp. | MR | Zbl

[9] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979, 832 pp. | MR

[10] Kampe de Fere Zh., Kempbell R., Peto G., Fogel T., Funktsii matematicheskoi fiziki, spravochnoe rukovodstvo, Fizmatgiz, M., 1963, 104 pp.

[11] Naimark M. A., Lineinye differentsialnye operatory, Gostekhteoretizdat, M., 1954, 352 pp.

[12] Marchenko V. A., Spektralnaya teoriya operatorov Shturma–Liuvillya, Nauk. dumka, Kiev, 1972, 220 pp. | MR | Zbl

[13] Levitan B. M., Sargsyan I. S., Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988, 432 pp. | MR | Zbl

[14] Gantmakher F. R., Teoriya matrits, Gostekhteoretizdat, M., 1953, 492 pp.

[15] Uilkinson Dzh. Kh., Algebraicheskaya problema sobstvennykh znachenii, Nauka, M., 1970, 564 pp.

[16] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1969, 368 pp. | MR

[17] Lankaster P., Teoriya matrits, Nauka, M., 1978, 280 pp. | MR

[18] Markus M., Mink Kh., Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972, 232 pp. | MR

[19] Ostrowski A. M., “Über die Determinanten mit überwiegender Hauptdiagonale”, Commentarii Mathematici Helvetici, 10 (1937), 69–96 | DOI | MR | Zbl