Solvability of Poisson's problem for Laplace operator on two dimensional stratified sets in usual sense
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 1, pp. 38-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

Solvability of Poisson's problem for Laplace operator on two dimensional stratified sets is established in usual sense.
@article{ISU_2012_12_1_a6,
     author = {S. L. Semenov},
     title = {Solvability of {Poisson's} problem for {Laplace} operator on two dimensional stratified sets in usual sense},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {38--52},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a6/}
}
TY  - JOUR
AU  - S. L. Semenov
TI  - Solvability of Poisson's problem for Laplace operator on two dimensional stratified sets in usual sense
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 38
EP  - 52
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a6/
LA  - ru
ID  - ISU_2012_12_1_a6
ER  - 
%0 Journal Article
%A S. L. Semenov
%T Solvability of Poisson's problem for Laplace operator on two dimensional stratified sets in usual sense
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 38-52
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a6/
%G ru
%F ISU_2012_12_1_a6
S. L. Semenov. Solvability of Poisson's problem for Laplace operator on two dimensional stratified sets in usual sense. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 1, pp. 38-52. http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a6/

[1] Penkin O. M., Bogatov E. M., “O slaboi razreshimosti zadachi Dirikhle na stratifitsirovannykh mnozhestvakh”, Mat. zametki, 68:6 (2000), 874–886 | DOI | MR | Zbl

[2] Nicaise S., Penkin O. M., “Poincaré–Perron's method for the Dirichlet problem on stratified sets”, J. of Math. Anal. and Appl., 296:2 (2004), 504–520 | DOI | MR | Zbl

[3] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L., Borovskikh A. V., Lazarev K. P., Shabrov S. A., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004, 272 pp. | MR | Zbl

[4] Lukyanov V. V., Nazarov A. I., “Reshenie zadachi Venttselya dlya uravneniya Laplasa i Gelmgoltsa s pomoschyu povtornykh potentsialov”, Zap. nauch. seminarov POMI, 250, 1998, 203–218 | MR | Zbl

[5] Lukyanov V. V., Nazarov A. I., “Ispravleniya k state ‘Reshenie zadachi Venttselya dlya uravneniya Laplasa i Gelmgoltsa s pomoschyu povtornykh potentsialov’ ”, Zap. nauch. seminarov POMI, 324, 2005, 129–130 | MR | Zbl

[6] Burago Yu. D., Mazya V. G., “Mnogomernaya teoriya potentsialov i reshenie kraevykh zadach dlya oblastei s neregulyarnymi granitsami”, Zap. nauch. seminarov Leningr. otd-niya Mat. in-ta AN SSSR, 3, 1967, 3–152 | MR | Zbl

[7] Gyunter N. M., Teoriya potentsiala i ee primenenie k osnovnym zadacham matematicheskoi fiziki, Fizmatlit, M., 1953, 415 pp. | MR

[8] Kurant R., Gilbert D., Metody matematicheskoi fiziki, v 2 t., v. 2, Gostekhteoretizdat, M.–L., 1945, 620 pp.

[9] Rudin U., Funktsionalnyi analiz, Mir, M., 1975, 443 pp. | MR

[10] Nicaise S., Sanding A. M., “Transmission problems for the laplace and elasticity operators: Regularity and boundary integral formulation”, Math. Model and Methods in Appl. Sci., 9 (1999), 855–898 | DOI | MR | Zbl

[11] Penkin O. M., Pokornyi Yu. V., “O nesovmestnykh neravenstvakh dlya ellipticheskikh operatorov na stratifitsirovannykh mnozhestvakh”, Differents. uravneniya, 34:8 (1998), 1107–1113 | MR | Zbl

[12] Gavrilov A. A., Nicaise S., Penkin O. M., “Poincaré's inequality on stratified sets and applications”, Evolution Equations : Applications to Physics, Industry, Life Sciences and Economics (Levico Terme, 2000), Progr. Nonlinear Differential Equations Appl., 55, Birkhäuser, Basel, 2003, 195–213 | MR | Zbl

[13] Penkin O. M., “About a geometrical approach to multistructures and some qualitative properties of solutions”, Partial Differential Equations on Multistructures (Luminy, 1999), Lecture Notes in Pure and Appl. Math., 219, eds. F. Ali Mehmeti, J. von Belov, S. Nicaise, Marcel Dekker, N.Y., 2001, 183–191 | MR | Zbl