Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2012_12_1_a2, author = {S. V. Galaev}, title = {The intrinsic geometry of almost contact metric manifolds}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {16--22}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a2/} }
TY - JOUR AU - S. V. Galaev TI - The intrinsic geometry of almost contact metric manifolds JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2012 SP - 16 EP - 22 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a2/ LA - ru ID - ISU_2012_12_1_a2 ER -
S. V. Galaev. The intrinsic geometry of almost contact metric manifolds. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 1, pp. 16-22. http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a2/
[1] Chern S. S., “Pseudogroupes continus infinis”, Colloques Intern. Centre Nat. Rech. Sci., 52 (1953), 119–136 | MR | Zbl
[2] Gray J. W., “Some global properties of contact structures”, Ann. of Math., 69:2 (1959), 421–450 | DOI | MR | Zbl
[3] Sasaki S., “On differentiable manifolds with certain structures which are closely related to almost contact structure”, Tôhoku Math. J. Second Series, 12:3 (1960), 459–476 | DOI | MR | Zbl
[4] Blair D. E., Contact manifolds in Riemannian geometry, Springer-Verlag, Berlin–N.Y., 1976, 146 pp. | MR | Zbl
[5] Kirichenko V. F., “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhn. Ser. Probl. geom., 18, VINITI, 1986, 25–71 | MR | Zbl
[6] Kirichenko V. F., Rustanov A. R., “Differentsialnaya geometriya kvazi-sasakievykh mnogoobrazii”, Mat. sb., 193:8 (2002), 71–100 | DOI | MR | Zbl
[7] Boyer C. P., Nakamaye M., “On Sasaki-Einstein manifolds in dimension five”, Geom. Dedicata, 144 (2010), 141–156 | DOI | MR | Zbl
[8] Stamin C., Udriste C., “Nonholonomic geometry of Gibbs contact structure”, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 72:1 (2010), 153–170 | MR | Zbl
[9] Vagner V. V., Differentsialnaya geometriya negolonomnykh mnogoobrazii, VIII Mezhdunar. konkurs im. N. I. Lobachevskogo (1937): otchët, Kazan. fiz.-mat. obsch-vo, Kazan, 1940, 327 pp.
[10] Vagner V. V., “Geometriya $(n-1)$-mernogo negolonomnogo mnogoobraziya v $n$-mernom prostranstve”, Tr. seminara po vektornomu i tenzornomu analizu, 5, Izd-vo Mosk. un-ta, M., 1941, 173–255 | MR
[11] Malakhaltsev M. A., “Sloeniya s listovymi strukturami”, Itogi nauki i tekhn. Ser. Probl. geom., 73, VINITI, 2002, 65–102 | Zbl
[12] Vershik A. M., Gershkovich V. Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundamentalnye napravleniya, 16, VINITI, 1987, 5–85 | MR | Zbl
[13] Manin Yu. I., Kalibrovochnye polya i kompleksnaya geometriya, Nauka, M., 1984, 336 pp. | MR
[14] Bukusheva A. V., Galaev S. V., “O dopustimoi kelerovoi strukture na kasatelnom rassloenii k negolonomnomu mnogoobraziyu”, Matematika. Mekhanika, sb. nauch. tr., 7, Izd-vo Sarat. un-ta, Saratov, 2005, 12–14
[15] Galaev S. V., Extension of the interior connection of a nonholonomic manifold with a Finsler metric, [Elektronnyi resurs], 22 Mar 2011, 9 pp., arXiv: 1103.4337v1[math.DG]
[16] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v 2 t., v. 2, Nauka, M., 1981, 416 pp.