The intrinsic geometry of almost contact metric manifolds
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 1, pp. 16-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the notion of the intrinsic geometry of an almost contact metric manifold is introduced. Description of some classes of spaces with almost contact metric structures in terms of the intrinsic geometry is given. A new type of almost contact metric spaces, more precisely, Hermition almost contact metric spaces, is introduced.
@article{ISU_2012_12_1_a2,
     author = {S. V. Galaev},
     title = {The intrinsic geometry of almost contact metric manifolds},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {16--22},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a2/}
}
TY  - JOUR
AU  - S. V. Galaev
TI  - The intrinsic geometry of almost contact metric manifolds
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2012
SP  - 16
EP  - 22
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a2/
LA  - ru
ID  - ISU_2012_12_1_a2
ER  - 
%0 Journal Article
%A S. V. Galaev
%T The intrinsic geometry of almost contact metric manifolds
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2012
%P 16-22
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a2/
%G ru
%F ISU_2012_12_1_a2
S. V. Galaev. The intrinsic geometry of almost contact metric manifolds. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 12 (2012) no. 1, pp. 16-22. http://geodesic.mathdoc.fr/item/ISU_2012_12_1_a2/

[1] Chern S. S., “Pseudogroupes continus infinis”, Colloques Intern. Centre Nat. Rech. Sci., 52 (1953), 119–136 | MR | Zbl

[2] Gray J. W., “Some global properties of contact structures”, Ann. of Math., 69:2 (1959), 421–450 | DOI | MR | Zbl

[3] Sasaki S., “On differentiable manifolds with certain structures which are closely related to almost contact structure”, Tôhoku Math. J. Second Series, 12:3 (1960), 459–476 | DOI | MR | Zbl

[4] Blair D. E., Contact manifolds in Riemannian geometry, Springer-Verlag, Berlin–N.Y., 1976, 146 pp. | MR | Zbl

[5] Kirichenko V. F., “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhn. Ser. Probl. geom., 18, VINITI, 1986, 25–71 | MR | Zbl

[6] Kirichenko V. F., Rustanov A. R., “Differentsialnaya geometriya kvazi-sasakievykh mnogoobrazii”, Mat. sb., 193:8 (2002), 71–100 | DOI | MR | Zbl

[7] Boyer C. P., Nakamaye M., “On Sasaki-Einstein manifolds in dimension five”, Geom. Dedicata, 144 (2010), 141–156 | DOI | MR | Zbl

[8] Stamin C., Udriste C., “Nonholonomic geometry of Gibbs contact structure”, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 72:1 (2010), 153–170 | MR | Zbl

[9] Vagner V. V., Differentsialnaya geometriya negolonomnykh mnogoobrazii, VIII Mezhdunar. konkurs im. N. I. Lobachevskogo (1937): otchët, Kazan. fiz.-mat. obsch-vo, Kazan, 1940, 327 pp.

[10] Vagner V. V., “Geometriya $(n-1)$-mernogo negolonomnogo mnogoobraziya v $n$-mernom prostranstve”, Tr. seminara po vektornomu i tenzornomu analizu, 5, Izd-vo Mosk. un-ta, M., 1941, 173–255 | MR

[11] Malakhaltsev M. A., “Sloeniya s listovymi strukturami”, Itogi nauki i tekhn. Ser. Probl. geom., 73, VINITI, 2002, 65–102 | Zbl

[12] Vershik A. M., Gershkovich V. Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundamentalnye napravleniya, 16, VINITI, 1987, 5–85 | MR | Zbl

[13] Manin Yu. I., Kalibrovochnye polya i kompleksnaya geometriya, Nauka, M., 1984, 336 pp. | MR

[14] Bukusheva A. V., Galaev S. V., “O dopustimoi kelerovoi strukture na kasatelnom rassloenii k negolonomnomu mnogoobraziyu”, Matematika. Mekhanika, sb. nauch. tr., 7, Izd-vo Sarat. un-ta, Saratov, 2005, 12–14

[15] Galaev S. V., Extension of the interior connection of a nonholonomic manifold with a Finsler metric, [Elektronnyi resurs], 22 Mar 2011, 9 pp., arXiv: 1103.4337v1[math.DG]

[16] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, v 2 t., v. 2, Nauka, M., 1981, 416 pp.