On idempotent elements of semigroup of increasing monotonous mappings
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 4, pp. 27-33
Cet article a éte moissonné depuis la source Math-Net.Ru
In some special classes of ordered topological spaces we characterize roundings as extreme points of set of non increasing isotonic mappings, and establish their stability in Hyers–Ulam sense.
@article{ISU_2011_11_4_a3,
author = {A. L. Kryukova},
title = {On idempotent elements of semigroup of increasing monotonous mappings},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {27--33},
year = {2011},
volume = {11},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a3/}
}
TY - JOUR AU - A. L. Kryukova TI - On idempotent elements of semigroup of increasing monotonous mappings JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2011 SP - 27 EP - 33 VL - 11 IS - 4 UR - http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a3/ LA - ru ID - ISU_2011_11_4_a3 ER -
A. L. Kryukova. On idempotent elements of semigroup of increasing monotonous mappings. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 4, pp. 27-33. http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a3/
[1] Kulisch U., “An axiomatic Approach to Rounded Computations”, Numer. Math., 18 (1971), 1–17 | DOI | MR | Zbl
[2] Kaminsky T. E., Kreinovich V., “Natural requirements for natural roundings lead to a hardware-independent characterization of standard rounding procedures”, Notes on intuitionistic fuzzy sets, 4:3 (1998), 57–64
[3] Kaminskii T. E., “K teorii intervalnykh okruglenii”, Issledovaniya po matematicheskomu analizu i metodike prepodavaniya matematiki, sb. nauch. tr., Vologda, 2000, 23–36
[4] Birkgof G., Teoriya reshetok, M., 1984, 567 pp. | MR
[5] Ulam S., Nereshennye matematicheskie zadachi, M., 1964, 168 pp.