On idempotent elements of semigroup of increasing monotonous mappings
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 4, pp. 27-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In some special classes of ordered topological spaces we characterize roundings as extreme points of set of non increasing isotonic mappings, and establish their stability in Hyers–Ulam sense.
@article{ISU_2011_11_4_a3,
     author = {A. L. Kryukova},
     title = {On idempotent elements of semigroup of increasing monotonous mappings},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {27--33},
     year = {2011},
     volume = {11},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a3/}
}
TY  - JOUR
AU  - A. L. Kryukova
TI  - On idempotent elements of semigroup of increasing monotonous mappings
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 27
EP  - 33
VL  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a3/
LA  - ru
ID  - ISU_2011_11_4_a3
ER  - 
%0 Journal Article
%A A. L. Kryukova
%T On idempotent elements of semigroup of increasing monotonous mappings
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 27-33
%V 11
%N 4
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a3/
%G ru
%F ISU_2011_11_4_a3
A. L. Kryukova. On idempotent elements of semigroup of increasing monotonous mappings. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 4, pp. 27-33. http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a3/

[1] Kulisch U., “An axiomatic Approach to Rounded Computations”, Numer. Math., 18 (1971), 1–17 | DOI | MR | Zbl

[2] Kaminsky T. E., Kreinovich V., “Natural requirements for natural roundings lead to a hardware-independent characterization of standard rounding procedures”, Notes on intuitionistic fuzzy sets, 4:3 (1998), 57–64

[3] Kaminskii T. E., “K teorii intervalnykh okruglenii”, Issledovaniya po matematicheskomu analizu i metodike prepodavaniya matematiki, sb. nauch. tr., Vologda, 2000, 23–36

[4] Birkgof G., Teoriya reshetok, M., 1984, 567 pp. | MR

[5] Ulam S., Nereshennye matematicheskie zadachi, M., 1964, 168 pp.