On idempotent elements of semigroup of increasing monotonous mappings
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 4, pp. 27-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

In some special classes of ordered topological spaces we characterize roundings as extreme points of set of non increasing isotonic mappings, and establish their stability in Hyers–Ulam sense.
@article{ISU_2011_11_4_a3,
     author = {A. L. Kryukova},
     title = {On idempotent elements of semigroup of increasing monotonous mappings},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {27--33},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a3/}
}
TY  - JOUR
AU  - A. L. Kryukova
TI  - On idempotent elements of semigroup of increasing monotonous mappings
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 27
EP  - 33
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a3/
LA  - ru
ID  - ISU_2011_11_4_a3
ER  - 
%0 Journal Article
%A A. L. Kryukova
%T On idempotent elements of semigroup of increasing monotonous mappings
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 27-33
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a3/
%G ru
%F ISU_2011_11_4_a3
A. L. Kryukova. On idempotent elements of semigroup of increasing monotonous mappings. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 4, pp. 27-33. http://geodesic.mathdoc.fr/item/ISU_2011_11_4_a3/

[1] Kulisch U., “An axiomatic Approach to Rounded Computations”, Numer. Math., 18 (1971), 1–17 | DOI | MR | Zbl

[2] Kaminsky T. E., Kreinovich V., “Natural requirements for natural roundings lead to a hardware-independent characterization of standard rounding procedures”, Notes on intuitionistic fuzzy sets, 4:3 (1998), 57–64

[3] Kaminskii T. E., “K teorii intervalnykh okruglenii”, Issledovaniya po matematicheskomu analizu i metodike prepodavaniya matematiki, sb. nauch. tr., Vologda, 2000, 23–36

[4] Birkgof G., Teoriya reshetok, M., 1984, 567 pp. | MR

[5] Ulam S., Nereshennye matematicheskie zadachi, M., 1964, 168 pp.