Method of boundary states as an effective technique of solving of heterogeneous problems of elasticity theory
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 103-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

Method of boundary states in combination with perturbation technique discovers its efficiency on heterogeneous problems of elastostatics. Solutions of problems for body of geometric configuration “peg”, produced from heterogeneous material with axisymmetric heterogeneity is performed and illustrated.
@article{ISU_2011_11_3_a16,
     author = {V. B. Penkov and L. V. Satalkina},
     title = {Method of boundary states as an effective technique of solving of heterogeneous problems of elasticity theory},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {103--110},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a16/}
}
TY  - JOUR
AU  - V. B. Penkov
AU  - L. V. Satalkina
TI  - Method of boundary states as an effective technique of solving of heterogeneous problems of elasticity theory
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 103
EP  - 110
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a16/
LA  - ru
ID  - ISU_2011_11_3_a16
ER  - 
%0 Journal Article
%A V. B. Penkov
%A L. V. Satalkina
%T Method of boundary states as an effective technique of solving of heterogeneous problems of elasticity theory
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 103-110
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a16/
%G ru
%F ISU_2011_11_3_a16
V. B. Penkov; L. V. Satalkina. Method of boundary states as an effective technique of solving of heterogeneous problems of elasticity theory. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 103-110. http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a16/

[1] Penkov V. B., Penkov V. V., “Metod granichnykh sostoyanii dlya resheniya zadach lineinoi mekhaniki”, Dalnevostochnyi mat. zhurn., 2:2 (2001), 115–137

[2] Lure A. I., Teoriya uprugosti, Nauka, M., 1970, 940 pp. | Zbl

[3] Kolmogorov A. N. Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2004, 571 pp.

[4] Penkov V. B., Rozhkov A. N., “Metod granichnykh sostoyanii v osnovnoi kontaktnoi zadache teorii uprugosti”, Izv. TulGU. Ser. Matematika. Mekhanika. Informatika, 11:2, Mekhanika (2005), 101–106

[5] Kharitonenko A. A., Modelirovanie sostoyanii garmonicheskikh sred i razrabotka metoda raspoznavaniya sostoyanii, dis. $\dots$ kand. fiz.-mat. nauk., Tula, 2006, 100 pp.