Method of boundary states as an effective technique of solving of heterogeneous problems of elasticity theory
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 103-110
Cet article a éte moissonné depuis la source Math-Net.Ru
Method of boundary states in combination with perturbation technique discovers its efficiency on heterogeneous problems of elastostatics. Solutions of problems for body of geometric configuration “peg”, produced from heterogeneous material with axisymmetric heterogeneity is performed and illustrated.
@article{ISU_2011_11_3_a16,
author = {V. B. Penkov and L. V. Satalkina},
title = {Method of boundary states as an effective technique of solving of heterogeneous problems of elasticity theory},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {103--110},
year = {2011},
volume = {11},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a16/}
}
TY - JOUR AU - V. B. Penkov AU - L. V. Satalkina TI - Method of boundary states as an effective technique of solving of heterogeneous problems of elasticity theory JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2011 SP - 103 EP - 110 VL - 11 IS - 3 UR - http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a16/ LA - ru ID - ISU_2011_11_3_a16 ER -
%0 Journal Article %A V. B. Penkov %A L. V. Satalkina %T Method of boundary states as an effective technique of solving of heterogeneous problems of elasticity theory %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2011 %P 103-110 %V 11 %N 3 %U http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a16/ %G ru %F ISU_2011_11_3_a16
V. B. Penkov; L. V. Satalkina. Method of boundary states as an effective technique of solving of heterogeneous problems of elasticity theory. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 103-110. http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a16/
[1] Penkov V. B., Penkov V. V., “Metod granichnykh sostoyanii dlya resheniya zadach lineinoi mekhaniki”, Dalnevostochnyi mat. zhurn., 2:2 (2001), 115–137
[2] Lure A. I., Teoriya uprugosti, Nauka, M., 1970, 940 pp. | Zbl
[3] Kolmogorov A. N. Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2004, 571 pp.
[4] Penkov V. B., Rozhkov A. N., “Metod granichnykh sostoyanii v osnovnoi kontaktnoi zadache teorii uprugosti”, Izv. TulGU. Ser. Matematika. Mekhanika. Informatika, 11:2, Mekhanika (2005), 101–106
[5] Kharitonenko A. A., Modelirovanie sostoyanii garmonicheskikh sred i razrabotka metoda raspoznavaniya sostoyanii, dis. $\dots$ kand. fiz.-mat. nauk., Tula, 2006, 100 pp.