Stability of the cylindrical cover with the elastic-viscous-plastic filler at axial compression
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 86-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

Within the limits of the exact three-dimensional equations of stability of an equilibrium state of a cylindrical cover with a filler is investigated at axial compression. Calculations were spent for a case when the cover material was modelled by an elastic body, and a filler mate-rial – environment with difficult rheological properties – elastic-viscous-plastic. The estimation of influence on size of critical pressure of parameters of a cover and a filler is given.
@article{ISU_2011_11_3_a12,
     author = {D. V. Gotsev},
     title = {Stability of the cylindrical cover with the elastic-viscous-plastic filler at axial compression},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {86--91},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a12/}
}
TY  - JOUR
AU  - D. V. Gotsev
TI  - Stability of the cylindrical cover with the elastic-viscous-plastic filler at axial compression
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 86
EP  - 91
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a12/
LA  - ru
ID  - ISU_2011_11_3_a12
ER  - 
%0 Journal Article
%A D. V. Gotsev
%T Stability of the cylindrical cover with the elastic-viscous-plastic filler at axial compression
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 86-91
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a12/
%G ru
%F ISU_2011_11_3_a12
D. V. Gotsev. Stability of the cylindrical cover with the elastic-viscous-plastic filler at axial compression. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 3, pp. 86-91. http://geodesic.mathdoc.fr/item/ISU_2011_11_3_a12/

[1] Ilyushin A. A., Plastichnost. Osnovy obschei matematicheskoi teorii, Izd-vo AN SSSR, M., 1963, 271 pp.

[2] Guz A. N., Osnovy trekhmernoi teorii ustoichivosti deformiruemykh tel, Vischa shkola, Kiev, 1986, 511 pp.

[3] Babich I. Yu., Cherevko M. A., “Ustoichivost tsilindricheskikh obolochek s uprugoplasticheskim zapolnitelem pri osevom szhatii”, Prikl. mekhanika, 20:3 (1984), 60–64 | Zbl

[4] Bykovtsev G. I., Ivlev D. D., Teoriya plastichnosti, Dalnauka, Vladivostok, 1998, 528 pp.

[5] Ishlinskii A. Yu., Ivlev D. D., Matematicheskaya teoriya plastichnosti, Fizmatlit, M., 2001, 704 pp.

[6] Sporykhin A. N., Metod vozmuschenii v zadachakh ustoichivosti slozhnykh sred, Izd-vo Voronezh. un-ta, Voronezh, 1997, 359 pp.

[7] Novozhilov V. V., Teoriya uprugosti, Sudpromgiz, L., 1958, 370 pp.

[8] Sporykhin A. N., Shashkin A. I., Ustoichivost ravnovesiya prostranstvennykh tel i zadachi mekhaniki gornykh porod, Fizmatlit, M., 2004, 232 pp.

[9] Kornishin M. S., Nelineinye zadachi teorii plastin i pologikh obolochek i metody ikh resheniya, Nauka, M., 1964, 192 pp. | Zbl