Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2011_11_2_a9, author = {V. A. Kovalev and Yu. N. Radayev}, title = {An optimal system constructing algorithm for symmetry algebra of three-dimensional equations of the perfect plasticity}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {61--77}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a9/} }
TY - JOUR AU - V. A. Kovalev AU - Yu. N. Radayev TI - An optimal system constructing algorithm for symmetry algebra of three-dimensional equations of the perfect plasticity JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2011 SP - 61 EP - 77 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a9/ LA - ru ID - ISU_2011_11_2_a9 ER -
%0 Journal Article %A V. A. Kovalev %A Yu. N. Radayev %T An optimal system constructing algorithm for symmetry algebra of three-dimensional equations of the perfect plasticity %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2011 %P 61-77 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a9/ %G ru %F ISU_2011_11_2_a9
V. A. Kovalev; Yu. N. Radayev. An optimal system constructing algorithm for symmetry algebra of three-dimensional equations of the perfect plasticity. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 2, pp. 61-77. http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a9/
[1] Ivlev D. D., “O sootnosheniyakh, opredelyayuschikh plasticheskoe techenie pri uslovii plastichnosti Treska, i ego obobscheniyakh”, Dokl. AN SSSR, 124:3 (1959), 546–549 | MR | Zbl
[2] Radaev Yu. N., “O kanonicheskikh preobrazovaniyakh Puankare i invariantakh uravnenii plasticheskogo ravnovesiya”, Izv. AN SSSR. Mekhanika tverdogo tela, 1990, no. 1, 86–94
[3] Radaev Yu. N., Prostranstvennaya zadacha matematicheskoi teorii plastichnosti, 2-e izd., pererab. i dop., Izd-vo Samar. gos. un-ta, Samara, 2006, 340 pp.
[4] Radaev Yu. N., Gudkov V. A., “Ob odnoi estestvennoi konechnomernoi podalgebre algebry simmetrii trekhmernykh uravnenii matematicheskoi teorii plastichnosti”, Vestn. Samar. gos. un-ta. Estestvennonauchnaya ser., 2005, no. 5(39), 52–70 | MR
[5] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 400 pp. | MR | Zbl
[6] Olver P. J., Application of Lie Groups to Differential Equations, Springer, N.Y., 1986, v russkom perevode sm. [7] | MR | Zbl
[7] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989, 639 pp. | MR | Zbl
[8] Olver P. J., Equivalence, Invariants and Symmetry, Cambridge University Press, Cambridge–N.Y.–Melbourne, 1995, 526 pp. | MR | Zbl
[9] Kovalev V. A., Radaev Yu. N., Elementy teorii polya: variatsionnye simmetrii i geometricheskie invarianty, Fizmatlit, M., 2009, 156 pp.
[10] Kovalev V. A., Radaev Yu. N., Volnovye zadachi teorii polya i termomekhanika, Izd-vo Sarat. un-ta, Saratov, 2010, 328 pp.