The constitutive equations for the bone tissue structural adaptation
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 2, pp. 54-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

The constitutive relationships for cortical and trabecular bone tissue structural adaptation are offered. These constitutive equations connect the rate of change of the porous radius with the strain adaptive stimulus and the bone cells activation. The used approach takes account of bone cells activation and it is alternative to the known experimental Frost's Basic Multicellular Units method. That approach allows spreading the cellular remodeling mechanism on the functional adaptation process.
@article{ISU_2011_11_2_a8,
     author = {Yu. V. Akulich and P. A. Bruchanov and M. V. Merzlyakov and A. V. Sotin},
     title = {The constitutive equations for the bone tissue structural adaptation},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {54--61},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a8/}
}
TY  - JOUR
AU  - Yu. V. Akulich
AU  - P. A. Bruchanov
AU  - M. V. Merzlyakov
AU  - A. V. Sotin
TI  - The constitutive equations for the bone tissue structural adaptation
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 54
EP  - 61
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a8/
LA  - ru
ID  - ISU_2011_11_2_a8
ER  - 
%0 Journal Article
%A Yu. V. Akulich
%A P. A. Bruchanov
%A M. V. Merzlyakov
%A A. V. Sotin
%T The constitutive equations for the bone tissue structural adaptation
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 54-61
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a8/
%G ru
%F ISU_2011_11_2_a8
Yu. V. Akulich; P. A. Bruchanov; M. V. Merzlyakov; A. V. Sotin. The constitutive equations for the bone tissue structural adaptation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 2, pp. 54-61. http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a8/

[1] Hegedus D. H., Cowin S. C., “Bone remodeling II: small strain adaptive elasticity”, J. of Elasticity, 6:4 (1976), 337–352 | DOI | MR | Zbl

[2] Martin R. B., “The effects of geometric feedback in the development of osteoporosis”, J. of Biomechanics, 5 (1972), 447–455 | DOI

[3] Dempster D. V., “Remodelirovanie kosti”, Osteoporoz, eds. Riggz B. L., Melton III L. D., Izd-vo Binom, Nevskii dialekt, M.–CPb., 2000, 85–100

[4] Underwood E. E., Quantitative Stereology, Addison-Wesley Publishing Co., Reading, MA, 1970, 232 pp.

[5] Martin R. B., “The usefulness of mathematical models for bone remodeling”, Yearbook of Physical Anthropology, 28 (1985), 227–236 | DOI

[6] Hart R. T., Davy D. T., “Theories of bone modeling and remodeling”, Bone mechanics, ed. S. C. Cowin, CRS Press, Bossa Raton, 1989, 253–277

[7] Hazelwood S. J., Martin R. B., Rashid M. M., Rodrigo J. J., “The mechanistic model for internal bone remodeling exhibits different dynamic responses in disuse and overload”, J. of Biomechanics, 34 (2001), 299–308 | DOI

[8] Frost H. M., Mathematical Elements of Lamellar Bone Remodeling, Springer, N.Y., 1964, 246 pp.

[9] Knets I. V., Pfafrod G. O., Saulgozis Yu. Zh., Deformirovanie i razrushenie tverdykh biologicheskikh tkanei, Zinatne, Riga, 1989, 317 pp.

[10] Akulich A. Yu., Akulich Yu. V., Denisov A. S., “Opredelenie parametrov struktury gubchatoi kosti proksimalnogo otdela bedra cheloveka po opticheskoi plotnosti rentgenologicheskogo izobrazheniya”, Izvestiya vuzov. Povolzhskii region. Meditsinskie nauki, 2007, no. 1, 3–11

[11] Martin R. B., Burr D. B., Sharkey N. A., Skeletal Tissue Mechanics, Springer, N.Y., 1998, 392 pp.

[12] Parfit A. M., “Bone age, mineral density, and fatique damage”, Calcified Tissue Intern., 53 (1993), 82–86

[13] Cowin S. C., “Structural adaption of bone”, Applied Mechanics Review, 43:5, Supplement (1990), 126–133 | DOI | MR

[14] Jacobs C. R., Simo J. S., Beaupre G. S., Carter D. R., “Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations”, J. of Biomechanics, 30:6 (1997), 603–613 | DOI | MR

[15] Cowin S. C., Weinbaum S., Zeng Y., “A case for bone canaliculi as the anatomical site of strain generated potentials”, J. of Biomechanics, 28:11 (1995), 1117–1126 | DOI

[16] Salzstein R. A., Pollack S. R., “Electromechanical potentials in cortical bone – experimental analysis”, J. of Biomechanics, 20 (1987), 271–280 | DOI

[17] Weinbaum S., Cowin S. C., Zeng Y., “A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses”, J. of Biomechanics, 27:3 (1994), 339–360 | DOI

[18] Stetsula V. I., Brusko A. T., “Mekhanizm adaptatsionnoi perestroiki kostei”, Struktura i biomekhanika skeletno-myshechnoi i serdechno-sosudistoi sistem pozvonochnykh, sb. nauch. trudov, Nauk. dumka, Kiev, 1984, 141–143

[19] Knothe-Tate M. L., Niederer P., Knothe U., “In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading”, Bone, 22 (1998), 107–117 | DOI

[20] Neidlinger-Wilke C., Stall I., Claes L., Brand R., Hoellen I., Rubenacker S., Arand M., Kinzl L., “Human osteoblasts from younger normal and osteoporotic donors show differences in proliferation and TGF-3 release in response to cyclic strain”, J. of Biomechanics, 28 (1995), 1411–1418 | DOI

[21] Sotin A. V., Akulich Yu. V., Podgaets R. M., “Model adaptivnoi perestroiki kortikalnoi kostnoi tkani”, Ros. zhurn. biomekhaniki, 5:1 (2001), 24–32

[22] Regirer S. A., Shtein A. A., Logvenkov S. A., “Svoistva i funktsii kostnykh kletok: biomekhanicheskie aspekty”, Sovremennye problemy biomekhaniki. Mekhanika rosta i morfogeneza, no. 10, Izd-vo Mosk. un-ta, M., 2000, 174–224

[23] Lanyon L. E., “Functional strain in bone tissue as an objective and controlling stimulus for adaptive bone remodeling”, J. of Biomechanics, 20:11 (1997), 1083–1093 | DOI