Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2011_11_2_a6, author = {M. S. Abdel Latif}, title = {Lie symmetry analysis and some new exact solutions for a~variable coefficient modified {Kortweg--de} {Vries} equation arising in arterial mechanics}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {42--48}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a6/} }
TY - JOUR AU - M. S. Abdel Latif TI - Lie symmetry analysis and some new exact solutions for a~variable coefficient modified Kortweg--de Vries equation arising in arterial mechanics JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2011 SP - 42 EP - 48 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a6/ LA - ru ID - ISU_2011_11_2_a6 ER -
%0 Journal Article %A M. S. Abdel Latif %T Lie symmetry analysis and some new exact solutions for a~variable coefficient modified Kortweg--de Vries equation arising in arterial mechanics %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2011 %P 42-48 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a6/ %G ru %F ISU_2011_11_2_a6
M. S. Abdel Latif. Lie symmetry analysis and some new exact solutions for a~variable coefficient modified Kortweg--de Vries equation arising in arterial mechanics. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 2, pp. 42-48. http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a6/
[1] Demiray H., “Variable coefficient modified KdV equation in fluid-filled elastic tubes with stenosis: Solitary waves”, Chaos Soliton Fract., 42:1 (2009), 358–364 | DOI | MR | Zbl
[2] Demiray H., “Waves in fluid-filled elastic tubes with a stenosis: Variable coefficients KdV equations”, J. Comput. Appl. Math., 202 (2007), 328–338 | DOI | MR | Zbl
[3] Demiray H., “On the existence of some evolution equations in fluid-filled elastic tubes and their progressive wave solutions”, Intern. J. Eng. Sci., 42 (2004), 1693–1706 | DOI | MR | Zbl
[4] Kudryashov N. A., Sinelschikov D. I., Chernyavskii I. L., “Nelineinye evolyutsionnye uravneniya dlya opisaniya vozmuschenii v vyazko-elastichnoi trubke”, Nelineinaya dinamika, 4:1 (2008), 69–86
[5] Demiray H., “On some nonlinear waves in fluid-filled viscoelastic tubes: weakly dispersive case”, Communications in Nonlinear Science and Numerical Simulation, 10 (2005), 425–440 | DOI | MR | Zbl
[6] Wazwaz A., “The extended tanh method for abundant solitary wave solutions of nonlinear wave equations”, Appl. Math. Comput., 187 (2007), 1131–1142 | DOI | MR | Zbl
[7] Wazwaz A., “New sets of solitary wave solutions to the KdV, mKdV, and the generalized KdV equations”, Communications in Nonlinear Science and Numerical Simulation, 13 (2008), 331–339 | DOI | MR | Zbl
[8] Yin-Long Z., Yin-Ping L., Zhi-Bin L., “A connection between the $(\frac{G'}G)$-expansion method and the truncated Painlevé expansion method and its application to the mKdV equation”, Chin. Phys. B, 19 (2010), 1395–1404 | DOI
[9] Olver P. J., Applications of Lie Groups to Differential Equations, Springer-Verlag, N.Y., 1985 | MR
[10] Bluman G. W., Kumei S., Symmetries and Differential Equations, Springer-Verlag, N.Y., 1989 | MR | Zbl
[11] Liu H., Li J., “Lie symmetry analysis and exact solutions for the extended mKdV equation”, Acta. Appl. Math., 109 (2010), 1107–1119 | DOI | MR | Zbl
[12] Zhao X., Zhi H., Zhang H., “Improved Jacobi-function method with symbolic computation to construct new double-periodic solutions for the generalized Ito system”, Chaos Soliton Fract., 28 (2006), 112–126 | DOI | MR | Zbl
[13] El-Wakil S. A., Madkour M. A., Abdou M. A., “New traveling wave solutions for nonlinear evolution equations”, Phys. Lett. A, 365 (2007), 429–438 | DOI | MR | Zbl
[14] Zhong W., BelicM R., Lu Y., Huang T., “Traveling and solitary wave solutions to the one-dimensional Gross-Pitaevskii equation”, Phys. Rev. E, 81 (2010), 016605 | DOI
[15] Haldar K., “Effects of the shape of stenosis on the resistance to blood flow through an artery”, Bul. Math. Biol., 47:4 (1985), 545–550 | DOI
[16] Mekheimer K.S., El Kot M. A., “Influence of magnetic field and hall currents on blood flow through a stenotic artery”, Appl. Math. Mech., 29:8 (2008), 1093–1104 | DOI | MR | Zbl