Problem with conditions on all boundary for one 6-th order pseudoparabolic equation
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 2, pp. 36-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

Here consider characteristic problem with conditions, setting on all boundary, in two order space for 6th order equation with 3-times taken old particular derivative. The existence and uniqueness of the solution are proved.
@article{ISU_2011_11_2_a5,
     author = {E. A. Utkina},
     title = {Problem with conditions on all boundary for one 6-th order pseudoparabolic equation},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {36--41},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a5/}
}
TY  - JOUR
AU  - E. A. Utkina
TI  - Problem with conditions on all boundary for one 6-th order pseudoparabolic equation
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 36
EP  - 41
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a5/
LA  - ru
ID  - ISU_2011_11_2_a5
ER  - 
%0 Journal Article
%A E. A. Utkina
%T Problem with conditions on all boundary for one 6-th order pseudoparabolic equation
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 36-41
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a5/
%G ru
%F ISU_2011_11_2_a5
E. A. Utkina. Problem with conditions on all boundary for one 6-th order pseudoparabolic equation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 2, pp. 36-41. http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a5/

[1] Vekua I. N., Novye metody resheniya ellipticheskikh uravnenii, Gostekhizdat, M.–L., 1948, 296 pp. | MR

[2] Berezanskii Yu. M., “O zadache tipa Dirikhle dlya uravneniya kolebaniya struny”, UMZh, 12:4 (1960), 363–372 | MR

[3] Vakhaniya N. N., “Ob odnoi kraevoi zadache s zadaniem na vsei granitse dlya giperbolicheskoi sistemy, ekvivalentnoi uravneniyu kolebanii struny”, DAN SSSR, 116:6 (1957), 906–909 | Zbl

[4] Vakhaniya N. N., “O zadache Dirikhle dlya uravneniya kolebanii struny”, Soobscheniya AN Gruz.SSR, 21:2 (1958), 131–138 | Zbl

[5] Fokin M. V., “O zadache Dirikhle dlya uravneniya struny”, Nekorrektnye kraevye zadachi dlya neklassicheskikh uravnenii matematicheskoi fiziki, SO AN SSSR, Novosibirsk, 1981, 178–182

[6] Abdul-Latif A. I., “Dirichlet, Neumann and mixed Dirichlet–Neumann value problems for $u_{xy}=0$ in rectangles”, Proc. Roy. Sos. Edinburgh Ser. A, 82 (1978), 107–110 | DOI | MR | Zbl

[7] Soldatov A. P., Shkhanukov M. Kh., “Kraevye zadachi s obschim nelokalnym usloviem A. A. Samarskogo dlya psevdoparabolicheskikh uravnenii vysokogo poryadka”, DAN SSSR, 297:3 (1987), 547–552 | MR

[8] Utkina E. A., “K obschemu sluchayu zadachi Gursa”, Izv. vuzov. Matematika, 2005, no. 8, 57–62 | MR

[9] Zhegalov V. I., Mironov A. N., Differentsialnye uravneniya so starshimi chastnymi proizvodnymi, Kazanskoe matematicheskoe obschestvo, Kazan, 2001, 226 pp.

[10] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. | MR

[11] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1976, 528 pp.