Optimality solutions in games with preference relations
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 2, pp. 32-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

For $n$ person games with preference relations some types of optimality solutions are introduced. Elementary properties of their solutions are considered. One sufficient condition for nonempty $C_\alpha$-core is found.
@article{ISU_2011_11_2_a4,
     author = {T. F. Savina},
     title = {Optimality solutions in games with preference relations},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {32--36},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a4/}
}
TY  - JOUR
AU  - T. F. Savina
TI  - Optimality solutions in games with preference relations
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 32
EP  - 36
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a4/
LA  - ru
ID  - ISU_2011_11_2_a4
ER  - 
%0 Journal Article
%A T. F. Savina
%T Optimality solutions in games with preference relations
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 32-36
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a4/
%G ru
%F ISU_2011_11_2_a4
T. F. Savina. Optimality solutions in games with preference relations. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 2, pp. 32-36. http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a4/

[1] Rozen V. V., “Ravnovesie v igrakh s uporyadochennymi iskhodami”, Izv. Sarat. un-ta. Nov. ser. Matematika. Mekhanika. Informatika, 9:3 (2009), 61–66

[2] Savina T. F., “Kovariantnye i kontravariantnye gomomorfizmy igr s otnosheniyami predpochteniya”, Izv. Sarat. un-ta. Nov. ser. Matematika. Mekhanika. Informatika, 9:3 (2009), 66–70