Parametrization of bivariate nonseparable Haar wavelets
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 2, pp. 26-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

A parametrization of all orthogonal wavelet bases for Haar multiresolution analysis is derived. The bases generated by three piecewise constant wavelets $\{\eta_i(x,y)\}$, $i=1,2,3$, supported on $[0,1]\times[0,1]$, with values $a_{ij}\in\mathbb R$, $i=1,2,3$, $j=1,2,3,4$, are considered.
@article{ISU_2011_11_2_a3,
     author = {M. S. Krasilnikova},
     title = {Parametrization of bivariate nonseparable {Haar} wavelets},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {26--32},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a3/}
}
TY  - JOUR
AU  - M. S. Krasilnikova
TI  - Parametrization of bivariate nonseparable Haar wavelets
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 26
EP  - 32
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a3/
LA  - ru
ID  - ISU_2011_11_2_a3
ER  - 
%0 Journal Article
%A M. S. Krasilnikova
%T Parametrization of bivariate nonseparable Haar wavelets
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 26-32
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a3/
%G ru
%F ISU_2011_11_2_a3
M. S. Krasilnikova. Parametrization of bivariate nonseparable Haar wavelets. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 2, pp. 26-32. http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a3/

[1] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Teoriya vspleskov, Fizmatlit, M., 2005, 616 pp. | MR

[2] Hur Y., Ron A., “New constructions of piecewise-constant wavelets”, Electronic Transactions on Numerical Analysys, 25 (2006), 138–157 | MR | Zbl