The characteristic of stability of the solution in the problem of convex compact set asphericity
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 2, pp. 20-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of stability of the solution in the problem of asphericity of a convex set with respect to the error of defining the compact set. It is shown that the optimal value of the criterion function (an asphericity indicator) is stable. Properties of the set-valued mapping, that puts to a convex compact compact set the centers of its asphericity are also investigated. It is proved that this mapping is semicontinious from above everywhere in the space of convex compact sets.
@article{ISU_2011_11_2_a2,
     author = {S. I. Dudov and E. A. Mesheryakova},
     title = {The characteristic of stability of the solution in the problem of convex compact set asphericity},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {20--26},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a2/}
}
TY  - JOUR
AU  - S. I. Dudov
AU  - E. A. Mesheryakova
TI  - The characteristic of stability of the solution in the problem of convex compact set asphericity
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 20
EP  - 26
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a2/
LA  - ru
ID  - ISU_2011_11_2_a2
ER  - 
%0 Journal Article
%A S. I. Dudov
%A E. A. Mesheryakova
%T The characteristic of stability of the solution in the problem of convex compact set asphericity
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 20-26
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a2/
%G ru
%F ISU_2011_11_2_a2
S. I. Dudov; E. A. Mesheryakova. The characteristic of stability of the solution in the problem of convex compact set asphericity. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 2, pp. 20-26. http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a2/

[1] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR | Zbl

[2] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990 | MR

[3] Dudov S. I., Zlatorunskaya I. V., “Ravnomernaya otsenka vypuklogo kompakta sharom proizvolnoi normy”, Mat. sb., 191:10 (2000), 13–38 | DOI | MR | Zbl

[4] Dudov S. I., “Subdifferentsiruemost i superdifferentsiruemost funktsii rasstoyaniya”, Mat. zametki, 61:4 (1997), 530–542 | DOI | MR | Zbl

[5] Kamenev G. K., “Skorost skhodimosti adaptivnykh metodov poliedralnoi approksimatsii vypuklykh tel na nachalnom etape”, ZhVM i MF, 48:5 (2008), 763–778 | MR | Zbl

[6] Mescheryakova E. A., “O dvukh zadachakh po otsenke vypuklogo kompakta sharom”, Matematika. Mekhanika, sb. nauch. tr., 1, Izd-vo Sarat. un-ta, Saratov, 2008, 48–50

[7] Dudov S. I., Mescheryakova E. A., “Ob asferichnosti vypuklogo kompakta”, Matematika. Mekhanika, sb. nauch. tr., 11, Izd-vo Sarat. un-ta, Saratov, 2009, 24–27

[8] Dudov S. I., Mescheryakova E. A., “O priblizhennom reshenii zadachi ob asferichnosti vypuklogo kompakta”, Izv. Sarat. un-ta. Nov. ser. Matematika. Mekhanika. Informatika, 10:4 (2010), 13–17 | MR

[9] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004