Mode-series expansion of solutions of elasticity problems for a~strip
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 2, pp. 83-96

Voir la notice de l'article provenant de la source Math-Net.Ru

Oscillations of a strip are considered as a plane problem of elasticity theory. Description of oscillation modes is provided. Properties of eigenvalues and eigenfunctions are studied for a boundary value problem for their amplitudes. Green's function is constructed as a kernel of the inverse operator. Completeness and expansion theorems are proved which allow one to solve problems for finite and infinite membranes under arbitrary boundary conditions.
@article{ISU_2011_11_2_a11,
     author = {L. Yu. Kossovich and V. A. Yurko and I. V. Kirillova},
     title = {Mode-series expansion of solutions of elasticity problems for a~strip},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {83--96},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a11/}
}
TY  - JOUR
AU  - L. Yu. Kossovich
AU  - V. A. Yurko
AU  - I. V. Kirillova
TI  - Mode-series expansion of solutions of elasticity problems for a~strip
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 83
EP  - 96
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a11/
LA  - ru
ID  - ISU_2011_11_2_a11
ER  - 
%0 Journal Article
%A L. Yu. Kossovich
%A V. A. Yurko
%A I. V. Kirillova
%T Mode-series expansion of solutions of elasticity problems for a~strip
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 83-96
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a11/
%G ru
%F ISU_2011_11_2_a11
L. Yu. Kossovich; V. A. Yurko; I. V. Kirillova. Mode-series expansion of solutions of elasticity problems for a~strip. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 2, pp. 83-96. http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a11/