Mode-series expansion of solutions of elasticity problems for a~strip
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 2, pp. 83-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

Oscillations of a strip are considered as a plane problem of elasticity theory. Description of oscillation modes is provided. Properties of eigenvalues and eigenfunctions are studied for a boundary value problem for their amplitudes. Green's function is constructed as a kernel of the inverse operator. Completeness and expansion theorems are proved which allow one to solve problems for finite and infinite membranes under arbitrary boundary conditions.
@article{ISU_2011_11_2_a11,
     author = {L. Yu. Kossovich and V. A. Yurko and I. V. Kirillova},
     title = {Mode-series expansion of solutions of elasticity problems for a~strip},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {83--96},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a11/}
}
TY  - JOUR
AU  - L. Yu. Kossovich
AU  - V. A. Yurko
AU  - I. V. Kirillova
TI  - Mode-series expansion of solutions of elasticity problems for a~strip
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 83
EP  - 96
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a11/
LA  - ru
ID  - ISU_2011_11_2_a11
ER  - 
%0 Journal Article
%A L. Yu. Kossovich
%A V. A. Yurko
%A I. V. Kirillova
%T Mode-series expansion of solutions of elasticity problems for a~strip
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 83-96
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a11/
%G ru
%F ISU_2011_11_2_a11
L. Yu. Kossovich; V. A. Yurko; I. V. Kirillova. Mode-series expansion of solutions of elasticity problems for a~strip. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 2, pp. 83-96. http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a11/

[1] Ainola L., Nigul U. K., “Volnovye protsessy deformatsii uprugikh plit i obolochek”, Izv. AN ESSR. Ser. fiz.-mat. i tekhn. nauk, 14:1 (1965), 3–63 | MR

[2] Nigul U. K., “Sopostavlenie rezultatov analiza perekhodnykh volnovykh protsessov v obolochkakh i plastinakh po teorii uprugosti i priblezhennym teoriyam”, PMM, 1969, no. 2, 308–322 | Zbl

[3] Nigul U., “Regions of effective of the methods of three-dimensional and two-dimensional analysis of transient stress waves in shells and plates”, Intern. J. of Solid and Structures, 5 (1969), 607–627 | DOI | Zbl

[4] Kossovich L. Yu., Nestatsionarnye zadachi teorii uprugosti tonkikh obolochek, Izd-vo Sarat. un-ta, Saratov, 1986, 176 pp.

[5] Kaplunov U. D., Kossovich L. Yu., Nolde E. V., Dynamics of thin walled elastic bodies, Academic Press, San-Diego, 1998, 226 pp. | MR | Zbl

[6] Kossovich L. Yu., Kaplunov Yu. D., “Asimptoticheskii analiz nestatsionarnykh uprugikh voln v tonkikh obolochkakh vrascheniya pri udarnykh tortsevykh vozdeistviyakh”, Izv. Sarat. un-ta. Nov. ser., 1:2 (2001), 111–131 | MR

[7] Miklovits Y., “On wave propagation in an elastic plate with nonmixed edge conditions”, J. Acoust. Soc. Amer., 41:6 (1967), 1587 | DOI

[8] Rabotnov Yu. N., Mekhanika deformiruemogo tvërdogo tela, Nauka, M., 1988, 712 pp. | Zbl

[9] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1964, 272 pp. | MR

[10] Privalov I. I., Vvedenie v teoriyu funktsii kompleksnogo peremennogo, Nauka, M., 1967, 444 pp. | MR

[11] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965, 520 pp. | MR | Zbl

[12] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972, 624 pp. | MR

[13] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969, 528 pp. | MR | Zbl