Modification for the Chisnell's method of approximate analytic solution of the converging shock wave problem
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 2, pp. 78-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

The self-similar problem about a convergence to the centre of a strong shock wave is discussed. The approximate analytical solution which has the same form as the Chisnell's solution is proposed. The simple expressions for definition of self-similar representers of the velocity, density and square of the sound speed are written down. The self similar exponent is determined by solving the algebraic equation. The achived results correlate better with the exact solution of the classical numerical method.
@article{ISU_2011_11_2_a10,
     author = {V. S. Kozhanov and I. A. Chernov},
     title = {Modification for the {Chisnell's} method of approximate analytic solution of the converging shock wave problem},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {78--83},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a10/}
}
TY  - JOUR
AU  - V. S. Kozhanov
AU  - I. A. Chernov
TI  - Modification for the Chisnell's method of approximate analytic solution of the converging shock wave problem
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 78
EP  - 83
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a10/
LA  - ru
ID  - ISU_2011_11_2_a10
ER  - 
%0 Journal Article
%A V. S. Kozhanov
%A I. A. Chernov
%T Modification for the Chisnell's method of approximate analytic solution of the converging shock wave problem
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 78-83
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a10/
%G ru
%F ISU_2011_11_2_a10
V. S. Kozhanov; I. A. Chernov. Modification for the Chisnell's method of approximate analytic solution of the converging shock wave problem. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 2, pp. 78-83. http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a10/

[1] Brushlinskii K. V., Kazhdan Ya. M., “Ob avtomodelnykh resheniyakh nekotorykh zadach gazovoi dinamiki”, UMN, 18:2(110) (1963), 3–23 | MR | Zbl

[2] Chisnell R. F., “An analytic description of converging shock waves”, J. Fluid Mech., 354 (1998), 357–375 | DOI | MR | Zbl

[3] Sapunkov Ya. G., “Priblizhennoe analiticheskoe reshenie zadachi o skhodyascheisya udarnoi volne”, Matematika. Mekhanika, sb. nauch. trudov, 9, Izd-vo Sarat. un-ta, Saratov, 2007, 145–147

[4] Grinenko A., Gurovich V. Tz., Krasik Ya. E., “Semianalytical solution of the problem of converging shock waves”, Phys. Rev. Lett., 99 (2007), A. 124503

[5] Skorobogatko V. Ya., Teoriya vetvyaschikhsya tsepnykh drobei i ee primenenie v vychislitelnoi matematike, Nauka, M., 1983, 314 pp. | MR | Zbl

[6] Kozhanov V. S., “Modifikatsiya metoda Sapunkova resheniya zadachi o skhodyascheisya udarnoi volne”, Matematika. Mekhanika, sb. nauch. trudov, 10, Izd-vo Sarat. un-ta, Saratov, 2008, 126–128