On explicit and exact solutions of the Markushevich boundary problem for circle
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 2, pp. 9-20

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article the Markushevich boundary problem on the circle is considered for the case when the first coefficient of the problem is an arbitrary function from the Hölder class and the second coefficient is the boundary value of a function that is meromorphic in the unit disk. An explicit method of solution of the given problem is proposed, the number of linearly independent solutions of the homogeneous problem and the number of solvability conditions are calculated, the general solution of the problem is found.
@article{ISU_2011_11_2_a1,
     author = {V. M. Adukov and A. A. Patrushev},
     title = {On explicit and exact solutions of the {Markushevich} boundary problem for circle},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {9--20},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a1/}
}
TY  - JOUR
AU  - V. M. Adukov
AU  - A. A. Patrushev
TI  - On explicit and exact solutions of the Markushevich boundary problem for circle
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 9
EP  - 20
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a1/
LA  - ru
ID  - ISU_2011_11_2_a1
ER  - 
%0 Journal Article
%A V. M. Adukov
%A A. A. Patrushev
%T On explicit and exact solutions of the Markushevich boundary problem for circle
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 9-20
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a1/
%G ru
%F ISU_2011_11_2_a1
V. M. Adukov; A. A. Patrushev. On explicit and exact solutions of the Markushevich boundary problem for circle. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 2, pp. 9-20. http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a1/