$\Lambda$-summability and multiplicators of H\"older classes of Fourier series with respect to character systems
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 2, pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a Vilenkin group of bounded type. We obtain nessesary and sufficient conditions of uniform $\Lambda$-summability for all Fourier series of $f\in C(G)$ and one of $\Lambda$-summability in $L^1(G)$ for all Fourier series of $f\in L^1(G)$. Also we extend some T. Quek and L. Yap results to the case of general modulus of continuity.
@article{ISU_2011_11_2_a0,
     author = {N. Yu. Agafonova},
     title = {$\Lambda$-summability and multiplicators of {H\"older} classes of {Fourier} series with respect to character systems},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a0/}
}
TY  - JOUR
AU  - N. Yu. Agafonova
TI  - $\Lambda$-summability and multiplicators of H\"older classes of Fourier series with respect to character systems
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 3
EP  - 8
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a0/
LA  - ru
ID  - ISU_2011_11_2_a0
ER  - 
%0 Journal Article
%A N. Yu. Agafonova
%T $\Lambda$-summability and multiplicators of H\"older classes of Fourier series with respect to character systems
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 3-8
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a0/
%G ru
%F ISU_2011_11_2_a0
N. Yu. Agafonova. $\Lambda$-summability and multiplicators of H\"older classes of Fourier series with respect to character systems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 2, pp. 3-8. http://geodesic.mathdoc.fr/item/ISU_2011_11_2_a0/

[1] Agaev G. N., Vilenkin N. Ya., Dzhafarli G. M., Rubinshtein A. I., Multiplikativnye sistemy funktsii i garmonicheskii analiz na nul-mernykh gruppakh, ELM, Baku, 1981 | MR

[2] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962

[3] Rudin W., Fourier analysis on groups, John Wiley and Sons, N.Y., 1967 | MR

[4] Karamata J., Tomich M., “Sur la sommation des series de Fourier des founctions continues”, Publ. Inst. Math., 8 (1955), 123–138 | MR | Zbl

[5] Kharshiladze F. I., “O mnozhitelyakh ravnomernoi skhodimosti i pryamougolnykh matritsakh summirovaniya ryadov Fure”, Trudy Tbilisskogo gosuniversiteta, 84, 1961, 127–141

[6] Agafonova N. Yu., “O ravnomernoi skhodimosti preobrazovannykh ryadov Fure po multiplikativnym sistemam”, Izv. Sarat. un-ta. Nov. ser. Matematika. Mekhanika. Informatika, 9:1 (2009), 3–8

[7] Quek T. S., Yap L. Y. H., “Multipliers from one Lipschitz space to another”, J. Math. Anal. Appl., 86:1 (1982), 69–73 | DOI | MR | Zbl

[8] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[9] Volosivets S. S., Agafonova N. Yu., “O multiplikatorakh ravnomernoi skhodimosti ryadov po multiplikativnym sistemam”, Issledovaniya po algebre, teorii chisel, funktsionalnomu analizu i smezhnym voprosam, Mezhvuz. cb. nauch. trudov, 3, Izd-vo Sarat. un-ta, Saratov, 2005, 3–23

[10] Agafonova N. Yu., “O multiplikatorakh ryadov borelevskikh mer”, Issledovaniya po algebre, teorii chisel, funktsionalnomu analizu i smezhnym voprosam, Mezhvuz. sb. nauch. trudov, 4, Izd-vo Sarat. un-ta, Saratov, 2007, 3–10

[11] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR

[12] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, Fizmatgiz, M., 1958 | MR