Finite closed 5-loops of extended hyperbolic plane
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 1, pp. 38-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are four types of finite closed 5-loops which are invariant by the fundamental group $G$ and singled out on the extended hyperbolic plane $H^2$. It is proved that convex 5-loops belong to two types. The interior of the first type 5-loop coincides with the plane $H^2$. The 5-loop of the second type allows the partition into two simple loops of three and four dimension. Its interior coincides with the interior of the component of the simple 4-loop. The topological 5-loop properties are researched.
@article{ISU_2011_11_1_a5,
     author = {L. N. Romakina},
     title = {Finite closed 5-loops of extended hyperbolic plane},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {38--49},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a5/}
}
TY  - JOUR
AU  - L. N. Romakina
TI  - Finite closed 5-loops of extended hyperbolic plane
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 38
EP  - 49
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a5/
LA  - ru
ID  - ISU_2011_11_1_a5
ER  - 
%0 Journal Article
%A L. N. Romakina
%T Finite closed 5-loops of extended hyperbolic plane
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 38-49
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a5/
%G ru
%F ISU_2011_11_1_a5
L. N. Romakina. Finite closed 5-loops of extended hyperbolic plane. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 1, pp. 38-49. http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a5/

[1] Romakina L. N., “Konechnye zamknutye 3(4)-kontury rasshirennoi giperbolicheskoi ploskosti”, Izv. Sarat. un-ta. Nov. ser. Matematika. Mekhanika. Informatika, 10:3 (2010), 14–26

[2] Romakina L. N., Geometrii koevklidovoi i kopsevdoevklidovoi ploskostei, Nauch. kniga, Saratov, 2008