On the solution of chess positions using computational tree logic
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 1, pp. 111-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper describes a construction of four formulas of Computational tree logic corresponding to an arbitrary chess position. At least one of these formulas is satisfiable and leads to the solution of chess position: value of position (a draw or a victory of one of the sides) and necessary strategy for getting this value is constructed using the formula model.
@article{ISU_2011_11_1_a15,
     author = {R. V. Khelemendik},
     title = {On the solution of chess positions using computational tree logic},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {111--121},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a15/}
}
TY  - JOUR
AU  - R. V. Khelemendik
TI  - On the solution of chess positions using computational tree logic
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2011
SP  - 111
EP  - 121
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a15/
LA  - ru
ID  - ISU_2011_11_1_a15
ER  - 
%0 Journal Article
%A R. V. Khelemendik
%T On the solution of chess positions using computational tree logic
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2011
%P 111-121
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a15/
%G ru
%F ISU_2011_11_1_a15
R. V. Khelemendik. On the solution of chess positions using computational tree logic. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 11 (2011) no. 1, pp. 111-121. http://geodesic.mathdoc.fr/item/ISU_2011_11_1_a15/

[1] Khelemendik R. V., Elementy matematicheskoi logiki i vozmozhnosti ee prilozhenii, MATI, M., 2009, 124 pp.

[2] http://www.rybkachess.com

[3] Kapablanka Kh. R., Uchebnik shakhmatnoi igry, per. s angl., 2-e izd., ed. M. M. Botvinnik, Fizkultura i sport, M., 1995, 151 pp.

[4] Tverdokhlebov V. A., Geometricheskie obrazy zakonov funktsionirovaniya avtomatov, Nauch. kniga, Saratov, 2008, 183 pp.

[5] Emerson E. A., “Automated temporal reasoning about reactive systems”, Logics for concurrency., Lecture Notes in Computer Science, 1043, Springer, Berlin, 1996, 41–101 | DOI

[6] Emerson E. A., Halpern J. I., “Decision Procedures and Expressiveness in the Temporal Logic of Branching Time”, J. of Computer and System Sciences, 30:1 (1985), 1–24 | DOI | MR | Zbl

[7] Khelemendik R. V., “O edinoi formalnoi zapisi vsekh dopustimykh khodov v lyuboi shakhmatnoi pozitsii”, Sintez i slozhnost upravlyayuschikh sistem, materialy XVI Mezhdunar. shk.-seminara (Sankt-Peterburg, 26–30 iyunya 2006 g.), ed. O. B. Lupanov, Izd-vo mekh.-mat. f-ta Mosk. un-ta, M., 2006, 108–112

[8] Khelemendik R. V., “Algoritm raspoznavaniya formul logiki vetvyaschegosya vremeni i effektivnyi algoritm postroeniya vyvodov obscheznachimykh formul iz aksiom”, Matematicheskie voprosy kibernetiki, Sb. st., 15, ed. O. B. Lupanov, Fizmatlit, M., 2006, 217–266