The automata interpretation of integer sequences
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 4, pp. 58-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

Transformation of phase pictures to geometrical images of laws of functioning of state machines, offered and developed by V. A. Tverdokhlebov, has allowed to represent phase pictures by uniform mathematical structures – broken lines with numerical coordinates of points. V. A. Tverdokhlebov shows, that sequence of elements from the finite set, combined with linear order on set of input words, defines laws of functioning of the discrete determined dynamic system (state machine). It allows carry out the analysis of laws of functioning of state machines on the basis of research of properties of numerical sequences, and also it allows to research properties of numerical sequences by the analysis of properties of state machines.
@article{ISU_2010_10_4_a8,
     author = {A. S. Epifanov},
     title = {The automata interpretation of integer sequences},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {58--64},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_4_a8/}
}
TY  - JOUR
AU  - A. S. Epifanov
TI  - The automata interpretation of integer sequences
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 58
EP  - 64
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_4_a8/
LA  - ru
ID  - ISU_2010_10_4_a8
ER  - 
%0 Journal Article
%A A. S. Epifanov
%T The automata interpretation of integer sequences
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 58-64
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_4_a8/
%G ru
%F ISU_2010_10_4_a8
A. S. Epifanov. The automata interpretation of integer sequences. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 4, pp. 58-64. http://geodesic.mathdoc.fr/item/ISU_2010_10_4_a8/

[1] Tverdokhlebov V. A., Geometricheskie obrazy zakonov funktsionirovaniya avtomatov, Saratov, 2008, 183 pp.

[2] Epifanov A. S., Analiz fazovykh kartin diskretnykh dinamicheskikh sistem, Saratov, 2008, 156 pp.

[3] Epifanov A. S., “Analiz geometricheskikh obrazov zakonov funktsionirovaniya avtomatov”, Upravlenie bolshimi sistemami, 24 (2009), 81–98

[4] Epifanov A. S., “Postroenie i analiz klassov $(H,m,d(H))$-avtomatov”, Upravlenie bolshimi sistemami, V Vseros. shkola-seminar molodykh uchenykh, Lipetsk, 2008, 23–30

[5] The On-Line Encyclopedia of Integer Sequences, data obrascheniya: 11.09.2010 Elektronnyi resurs: http://www.research.att.com