Tricomi problem for differential-difference equations of mixed type in the asymmetric field
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 4, pp. 41-51

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper examines the boundary value problem for mixed type equations with two perpendicular lines of degeneracy and the delay in the derivative.
@article{ISU_2010_10_4_a6,
     author = {O. V. Lashtabega and A. N. Zarubin},
     title = {Tricomi problem for differential-difference equations of mixed type in the asymmetric field},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {41--51},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_4_a6/}
}
TY  - JOUR
AU  - O. V. Lashtabega
AU  - A. N. Zarubin
TI  - Tricomi problem for differential-difference equations of mixed type in the asymmetric field
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 41
EP  - 51
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_4_a6/
LA  - ru
ID  - ISU_2010_10_4_a6
ER  - 
%0 Journal Article
%A O. V. Lashtabega
%A A. N. Zarubin
%T Tricomi problem for differential-difference equations of mixed type in the asymmetric field
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 41-51
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_4_a6/
%G ru
%F ISU_2010_10_4_a6
O. V. Lashtabega; A. N. Zarubin. Tricomi problem for differential-difference equations of mixed type in the asymmetric field. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 4, pp. 41-51. http://geodesic.mathdoc.fr/item/ISU_2010_10_4_a6/