The global solvability of the problem of nonlinear diffusion and slow convection in slightly compressible viscous fluid
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 4, pp. 35-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with Stokes system, corresponding to the motion of slightly compressible viscous fluid where kinematic viscous depends on the admixture concentration. The system also contains the convective diffusion equation. The article proves the existence of generalized solution of the initial-boundary problem for this system in the limited domain with the homogeneous Dirichlet condition for the fluid velocity and the homogeneous Neumann condition for the concentration of admixture on the boundary of domain.
@article{ISU_2010_10_4_a5,
     author = {S. A. Gritsenko},
     title = {The global solvability of the problem of nonlinear diffusion and slow convection in slightly compressible viscous fluid},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {35--41},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_4_a5/}
}
TY  - JOUR
AU  - S. A. Gritsenko
TI  - The global solvability of the problem of nonlinear diffusion and slow convection in slightly compressible viscous fluid
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 35
EP  - 41
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_4_a5/
LA  - ru
ID  - ISU_2010_10_4_a5
ER  - 
%0 Journal Article
%A S. A. Gritsenko
%T The global solvability of the problem of nonlinear diffusion and slow convection in slightly compressible viscous fluid
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 35-41
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_4_a5/
%G ru
%F ISU_2010_10_4_a5
S. A. Gritsenko. The global solvability of the problem of nonlinear diffusion and slow convection in slightly compressible viscous fluid. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 4, pp. 35-41. http://geodesic.mathdoc.fr/item/ISU_2010_10_4_a5/

[1] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR

[2] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp. | MR | Zbl

[3] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980, 496 pp. | MR | Zbl