The mixed problem for the differential equation with involution and potential of the special kind
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 4, pp. 17-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the solution of some mixed problem with involution and real symmetrical potential, explicit analytical formula has been found with the use of the Fourier method. Techniques allowing to avoid term-by-term differentiation of the functional series and impose the minimum conditions for initial problem data, are used.
@article{ISU_2010_10_4_a2,
     author = {A. P. Khromov},
     title = {The mixed problem for the differential equation with involution and potential of the special kind},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {17--22},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_4_a2/}
}
TY  - JOUR
AU  - A. P. Khromov
TI  - The mixed problem for the differential equation with involution and potential of the special kind
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 17
EP  - 22
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_4_a2/
LA  - ru
ID  - ISU_2010_10_4_a2
ER  - 
%0 Journal Article
%A A. P. Khromov
%T The mixed problem for the differential equation with involution and potential of the special kind
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 17-22
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_4_a2/
%G ru
%F ISU_2010_10_4_a2
A. P. Khromov. The mixed problem for the differential equation with involution and potential of the special kind. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 4, pp. 17-22. http://geodesic.mathdoc.fr/item/ISU_2010_10_4_a2/

[1] Andreev A. A., “O korrektnosti kraevykh zadach dlya nekotorykh uravnenii v chastnykh proizvodnykh s karlemanovskim sdvigom”, Differentsialnye uravneniya i ikh prilozheniya, Tr. 2-go Mezhdunar. seminara, Samara, 1998, 5–18

[2] Chernyatin V. A., Obosnovanie metoda Fure v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh, M., 1991, 112 pp. | MR | Zbl