The inverse problem of spectral analysis for the matrix Sturm--Liouville equation
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 4, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

The inverse spectral problem is investigated for the matrix Sturm–Liouville equation on a finite interval. The article provides properties of spectral characteristics, a constructive procedure for the solution of the inverse problem along with necessary and sufficient conditions for its solvability has been obtained.
@article{ISU_2010_10_4_a0,
     author = {N. P. Bondarenko},
     title = {The inverse problem of spectral analysis for the matrix {Sturm--Liouville} equation},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_4_a0/}
}
TY  - JOUR
AU  - N. P. Bondarenko
TI  - The inverse problem of spectral analysis for the matrix Sturm--Liouville equation
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 3
EP  - 13
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_4_a0/
LA  - ru
ID  - ISU_2010_10_4_a0
ER  - 
%0 Journal Article
%A N. P. Bondarenko
%T The inverse problem of spectral analysis for the matrix Sturm--Liouville equation
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 3-13
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_4_a0/
%G ru
%F ISU_2010_10_4_a0
N. P. Bondarenko. The inverse problem of spectral analysis for the matrix Sturm--Liouville equation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 4, pp. 3-13. http://geodesic.mathdoc.fr/item/ISU_2010_10_4_a0/

[1] Yurko V. A., Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2007, 384 pp. | Zbl

[2] Yurko V. A., “Inverse problems for matrix Sturm–Liouville operators”, Russian J. of Math. Physics, 13:1 (2006), 111–118 | DOI | MR | Zbl

[3] Carlson R., “An inverse problem for the matrix Schrödinger equation”, J. of Math. Analysis and Applications, 267 (2002), 564–575 | DOI | MR | Zbl

[4] Malamud M. M., “Uniqueness of the matrix Sturm–Liouville equation given a part of the monodromy matrix and borg type results”, Sturm–Liouville theory. Past and present, Birkhäuser, Basel, 2005, 237–270 | DOI | MR | Zbl

[5] Yurko V. A., “Inverse problems for the matrix Sturm–Liouville equation on a finite interval”, Inverse Problems, 22 (2006), 1139–1149 | DOI | MR | Zbl

[6] Chelkak D., Korotyaev E., “Weyl–Titchmarsh functions of vector-valued Sturm–Liouville operators on the unit interval”, J. of Functional Analysis, 257:5 (2009), 1546–1588 | DOI | MR | Zbl