Homentropic model of spherical shock wave reflection from the center of convergence
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 3, pp. 70-76

Voir la notice de l'article provenant de la source Math-Net.Ru

An implosive shock wave on a based gas the particular case of motion with zero pressure, but with variable density is discussed. The density is described by degree relation to distance up to a point of focusing of a shock wave. Such selection of an exponent in this relation that the entropy in all area of flow after passage of a shock wave was a constant (homentropic case) is offered. Thus qualitatively different behaviour of temperature in comparison with classical case Guderley–Landau–Stanjukovich is obtained.
@article{ISU_2010_10_3_a9,
     author = {I. A. Chernov},
     title = {Homentropic model of spherical shock wave reflection from the center of convergence},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {70--76},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a9/}
}
TY  - JOUR
AU  - I. A. Chernov
TI  - Homentropic model of spherical shock wave reflection from the center of convergence
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 70
EP  - 76
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a9/
LA  - ru
ID  - ISU_2010_10_3_a9
ER  - 
%0 Journal Article
%A I. A. Chernov
%T Homentropic model of spherical shock wave reflection from the center of convergence
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 70-76
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a9/
%G ru
%F ISU_2010_10_3_a9
I. A. Chernov. Homentropic model of spherical shock wave reflection from the center of convergence. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 3, pp. 70-76. http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a9/