Homentropic model of spherical shock wave reflection from the center of convergence
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 3, pp. 70-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

An implosive shock wave on a based gas the particular case of motion with zero pressure, but with variable density is discussed. The density is described by degree relation to distance up to a point of focusing of a shock wave. Such selection of an exponent in this relation that the entropy in all area of flow after passage of a shock wave was a constant (homentropic case) is offered. Thus qualitatively different behaviour of temperature in comparison with classical case Guderley–Landau–Stanjukovich is obtained.
@article{ISU_2010_10_3_a9,
     author = {I. A. Chernov},
     title = {Homentropic model of spherical shock wave reflection from the center of convergence},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {70--76},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a9/}
}
TY  - JOUR
AU  - I. A. Chernov
TI  - Homentropic model of spherical shock wave reflection from the center of convergence
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 70
EP  - 76
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a9/
LA  - ru
ID  - ISU_2010_10_3_a9
ER  - 
%0 Journal Article
%A I. A. Chernov
%T Homentropic model of spherical shock wave reflection from the center of convergence
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 70-76
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a9/
%G ru
%F ISU_2010_10_3_a9
I. A. Chernov. Homentropic model of spherical shock wave reflection from the center of convergence. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 3, pp. 70-76. http://geodesic.mathdoc.fr/item/ISU_2010_10_3_a9/

[1] Guderley G., “Starke kugelige und zylindrische Verdichtungsstösse in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse”, Luftfahrtforschung, 19 (1942), 302–311 (German) | MR | Zbl

[2] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. VI, Gidrodinamika, Fizmatlit, M., 2003, 736 pp. | MR

[3] Stanyukovich K. P., Neustanovivshiesya dvizheniya sploshnoi sredy, Nauka, M., 1971, 856 pp. | MR

[4] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Izd-vo SO AN SSSR, Novosibirsk, 1962, 236 pp.

[5] Khanter K., “O zakhlopyvanii pustoi polosti v vode”, Mekhanika: period. sb. per. inostr. st., 1961, no. 3(67), 77–100

[6] Lazarus R. B., “Self-Similar Solutions for Converging Shocks and Collapsing Cavities”, SIAM J. Numer. Anal., 18:2 (1981), 316–371 | DOI | MR | Zbl

[7] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Nauka, M., 1966, 688 pp.

[8] Sedov L. I., Metody podobiya i razmernostei v mekhanike, Nauka, M., 1967, 428 pp.

[9] Brushlinskii K. V., Kazhdan Ya. M., “Ob avtomodelnykh resheniyakh nekotorykh zadach gazovoi dinamiki”, UMN, 18:2(110) (1963), 3–23 | MR | Zbl

[10] Barenblatt G. I., Podobie, avtomodelnost, promezhutochnaya asimptotika, Gidrometeoizdat, L., 1978, 207 pp. | MR