Calculation of outgoing shock waves in the empty cavity collapse problem
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 1, pp. 44-54
Cet article a éte moissonné depuis la source Math-Net.Ru
The self-similar problem about a collapse of an empty cylindrical or spherical cavity in compressible fluid with adiabatic exponent $\gamma$ is considered. Two possible variants of the flow after collapse are discussed. The variants are connected with the entropy behavior through the outgoing shock. The calculations show that the main difference in the flow quantities behavior at reflection stage have a quantitative character. Outgoing shock compression ratio, characterized by relation $\rho_2/\rho_1$, decreases for both variants of the reflection when $\gamma$ is increase.
@article{ISU_2010_10_1_a7,
author = {V. S. Kozhanov},
title = {Calculation of outgoing shock waves in the empty cavity collapse problem},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {44--54},
year = {2010},
volume = {10},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a7/}
}
TY - JOUR AU - V. S. Kozhanov TI - Calculation of outgoing shock waves in the empty cavity collapse problem JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2010 SP - 44 EP - 54 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a7/ LA - ru ID - ISU_2010_10_1_a7 ER -
V. S. Kozhanov. Calculation of outgoing shock waves in the empty cavity collapse problem. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 1, pp. 44-54. http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a7/
[1] Khanter K., “O zakhlopyvanii pustoi polosti v vode”, Mekhanika: Periodicheskii sb. perevodov inostr. st., 3(67), 1961, 77–100
[2] Brushlinskii K. V., Kazhdan Ya. M., “Ob avtomodelnykh resheniyakh nekotorykh zadach gazovoi dinamiki”, UMN, 18:2(110) (1963), 3–23 | MR
[3] Taleyarkhan R. P., West C. D., Cho J. S. et al., “Evidence for Nuclear Emissions During Acoustic Cavitation”, Science, 295:5561 (2002), 1868–1873 | DOI
[4] Lord Rayleigh, “On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity”, Phil. Mag., 34:200 (1917), 94–98 | DOI | Zbl