Numerical investigation of spectrums of three-dimensional turbulent convection
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 1, pp. 62-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

The three-dimensional turbulent convectional flows of viscous and incompressible fluid in a rectangular parallelepiped numerically is simulated at heating from below. The horizontal boundaries are stress-free and isothermal. The calculated time spectrum of temperature pulsations at supercriticality is equal to 410 in centre of convective cell has a good agreement with experimental data for convection in cryogenic $He$. The Obukhov–Bolgiano spectra $k^{-11/5}$, $k^{-3}$ and $k^{-5}$ have been found for velocity pulsations. Also for temperature pulsations the Kolmogorov $k^{-5/3}$ and $k^{-2.4}$ are obtained. Such spectrums denote on temperature behavior as passive admixture and that dominant force for velocity is buoyancy.
@article{ISU_2010_10_1_a10,
     author = {I. B. Palymskiy},
     title = {Numerical investigation of spectrums of three-dimensional turbulent convection},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {62--71},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a10/}
}
TY  - JOUR
AU  - I. B. Palymskiy
TI  - Numerical investigation of spectrums of three-dimensional turbulent convection
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2010
SP  - 62
EP  - 71
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a10/
LA  - ru
ID  - ISU_2010_10_1_a10
ER  - 
%0 Journal Article
%A I. B. Palymskiy
%T Numerical investigation of spectrums of three-dimensional turbulent convection
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2010
%P 62-71
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a10/
%G ru
%F ISU_2010_10_1_a10
I. B. Palymskiy. Numerical investigation of spectrums of three-dimensional turbulent convection. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 10 (2010) no. 1, pp. 62-71. http://geodesic.mathdoc.fr/item/ISU_2010_10_1_a10/

[1] Kerr R. M., “Rayleigh number scaling in numerical convection”, J. Fluid Mech., 310 (1996), 139–179 | DOI | Zbl

[2] Malevsky A. V., “Spline-characteristic method for simulation of convective turbulence”, J. Comput. Phys., 123:2 (1996), 466–475 | DOI | Zbl

[3] Verzicco R., Camussi R., “Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell”, J. Fluid Mech., 477 (2003), 19–49 | DOI | Zbl

[4] Shishkina O., Wagner C., “Analysis of thermal dissipation rates in turbulent Rayleigh–Benard convection”, J. Fluid Mech., 546 (2006), 51–60 | DOI | MR | Zbl

[5] Cortese T., Balachandar S., “Vortical nature of thermal plumes in turbulent convection”, Phys. Fluids A, 5:12 (1993), 3226–3232 | DOI | Zbl

[6] Curry J. H., Herring J. R., Loncaric J., Orszag S. A., “Order and disorder in two- and three-dimensional Benard convection”, J. Fluid Mech., 147 (1984), 1–38 | DOI | Zbl

[7] Gertsenshtein S. Ya., Rodichev E. B., Shmidt V. M., “Vzaimodeistvie trekhmernykh voln vo vraschayuschemsya gorizontalnom sloe zhidkosti, podogrevaemom snizu”, Dokl. AN SSSR, 238:3 (1978), 545–548

[8] Wu X.-Z., Kananoff L., Libchaber A., Sano M., “Frequency power spectrum of temperature fluctuations in free convection”, Phys. Rev. Lett., 64:18 (1990), 2140–2143 | DOI

[9] Cioni S., Ciliberto S., Sommeria J., “Temperature structure functions in turbulent convection at low Prandtl number”, Europhys. Lett., 32:5 (1995), 413–418 | DOI

[10] Ashkenazi S., Steinberg V., “Spectra and statistics of velocity and temperature fluctuations in turbulent convection”, Phys. Rev. Lett., 83:23 (1999), 4760–4763 | DOI

[11] Niemela J. J., Skrbek L., Sreenivasan K. R., Donnelly R. J., “Turbulent convection at very high Rayleigh numbers”, Nature, 404:20 (2000), 837–840 | DOI

[12] Shang X.-D., Xia K.-Q., “Scaling of the velocity power spectra in turbulent thermal convection”, Phys. Rev. E, 64 (2001), 065301, 4 pp. | DOI

[13] Palymskii I. B., “Chislennoe issledovanie spektrov turbulentnoi konvektsii Releya–Benara”, Nelineinaya dinamika, 4:2 (2008), 145–156

[14] Getling A. V., Konvektsiya Releya–Benara. Struktury i dinamika, Editorial URSS, M., 1999, 247 pp.

[15] Goldstein R. J., Graham D. J., “Stability of a horizontal fluid with zero shear boundaries”, Phys. Fluids, 12:6 (1969), 1133–1137 | DOI

[16] Palymskii I. B., “Chislennoe modelirovanie dvumernoi konvektsii, rol granichnykh uslovii”, Izvestiya RAN. MZhG, 2007, no. 4, 61–71

[17] Frik P. G., Turbulentnost: podkhody i modeli, In-t kompyuternykh issledovanii, M., Izhevsk, 2003, 292 pp.

[18] Brazhe R. A., Kudelin O. N., “Eksperimentalnaya realizatsiya modeli Lorentsa konvektivnoi neustoichivosti zhidkosti v vertikalnoi toroidalnoi yacheike”, Izv. vuzov. PND, 14:6 (2006), 88–98

[19] Yu. S. Sedunov (red.), Atmosfera: Spravochnik, Gidrometeoizdat, L., 1991, 510 pp.

[20] Fillips O. M., Dinamika verkhnego sloya okeana, Gidrometeoizdat, L., 1980, 319 pp.

[21] Palymskii I. B., “Chislennoe modelirovanie dvumernoi konvektsii pri vysokoi nadkritichnosti”, Uspekhi mekhaniki, 2006, no. 4, 3–28

[22] Palymskii I. B., “Lineinyi i nelineinyi analiz chislennogo metoda rascheta konvektivnykh techenii”, Sib. zhurn. vychisl. matematiki, 7:2 (2004), 143–163

[23] Shumann U., Grettsbakh G., Klyaizer L., “Pryamye metody chislennogo modelirovaniya turbulentnykh techenii”, Metody rascheta turbulentnykh techenii, Mir, M., 1984, 464 pp.

[24] Paskonov V. M., Polezhaev V. I., Chudov L. A., Chislennoe modelirovanie protsessov teplo- i massoobmena, Nauka, M., 1984, 285 pp. | Zbl

[25] Gershuni G. Z., Zhukhovitskii E. M., Konvektivnaya ustoichivost neszhimaemoi zhidkosti, Nauka, M., 1972, 392 pp.

[26] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1988, 733 pp.

[27] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, 2-e izd., Nauka, M., 1978, 687 pp. | MR

[28] Palymskiy I. B., Fomin P. A., Hieronymus H., “The Rayleigh–Benard convection in gas with chemical reactions”, Sib. zhurn. vychisl. matematiki, 10:4 (2007), 371–383 | Zbl

[29] Zaslavskii G. M., Sagdeev R. Z., Vvedenie v nelineinuyu fiziku. Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988, 378 pp. | MR

[30] U. Frost, T. Moulden (red.), Turbulentnost. Printsipy i primenenie, Mir, M., 1980, 535 pp.