Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2009_9_3_a6, author = {O. V. Korovina and V. L. Pryadiev}, title = {Structure of mixed problem solution for wave equation on compact geometrical graph in nonzero initial velocity case}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {37--46}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a6/} }
TY - JOUR AU - O. V. Korovina AU - V. L. Pryadiev TI - Structure of mixed problem solution for wave equation on compact geometrical graph in nonzero initial velocity case JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2009 SP - 37 EP - 46 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a6/ LA - ru ID - ISU_2009_9_3_a6 ER -
%0 Journal Article %A O. V. Korovina %A V. L. Pryadiev %T Structure of mixed problem solution for wave equation on compact geometrical graph in nonzero initial velocity case %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2009 %P 37-46 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a6/ %G ru %F ISU_2009_9_3_a6
O. V. Korovina; V. L. Pryadiev. Structure of mixed problem solution for wave equation on compact geometrical graph in nonzero initial velocity case. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 3, pp. 37-46. http://geodesic.mathdoc.fr/item/ISU_2009_9_3_a6/
[1] Yurko V. A., “O vosstanovlenii operatorov Shturma–Liuvillya na grafakh”, Mat. zametki, 79:4 (2006), 619–630 | DOI | MR | Zbl
[2] Pryadiev V. L., “Opisanie resheniya nachalno-kraevoi zadachi dlya volnovogo uravneniya na odnomernoi prostranstvennoi seti cherez funktsiyu Grina sootvetstvuyuschei kraevoi zadachi dlya obyknovennogo differentsialnogo uravneniya”, Sovremennaya matematika i ee prilozheniya, 38, Tbilisi, 2006, 82–94
[3] Pryadiev V. L., “Chislennaya skhema resheniya nachalno-kraevoi zadachi dlya volnovogo uravneniya na odnomernoi prostranstvennoi seti pri obobschenno-gladkikh usloviyakh transmissii”, Vestn. Samar. gos. un-ta. Estestvennonauch. ser., 8/2(67), 2008, 195–202
[4] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L. i dr., Differentsialnye uravneniya na geometricheskikh grafakh, FIZMATLIT, M., 2004, 272 pp. | Zbl
[5] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Izd-vo MGU, M., 1999, 799 pp. | MR
[6] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya: V 3 t., v. II, Gos. izd-vo fiz.-mat. lit., M., 1959, 808 pp.