Two-mode branching extremals of smooth functionals with homogeneous features of the sixth order in minima points
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 2, pp. 25-30

Voir la notice de l'article provenant de la source Math-Net.Ru

A description of Fredholm functionals extremal distribution, bifurcating from minima points with two-dimensional degeneration and features of the sixth order is given. The main illustrating example is the problem of heterogeneous crystal ferroelectric phases branching (based on helical model). We use modified Lyapunov–Schmidt method (reduction to key function on $\mathbb R^n$), equipped with the elements of singularities theory of smooth functions. Emphasis is put on key function with square symmetry.
@article{ISU_2009_9_2_a4,
     author = {I. V. Kolesnikova},
     title = {Two-mode branching extremals of smooth functionals with homogeneous features of the sixth order in minima points},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {25--30},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a4/}
}
TY  - JOUR
AU  - I. V. Kolesnikova
TI  - Two-mode branching extremals of smooth functionals with homogeneous features of the sixth order in minima points
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2009
SP  - 25
EP  - 30
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a4/
LA  - ru
ID  - ISU_2009_9_2_a4
ER  - 
%0 Journal Article
%A I. V. Kolesnikova
%T Two-mode branching extremals of smooth functionals with homogeneous features of the sixth order in minima points
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2009
%P 25-30
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a4/
%G ru
%F ISU_2009_9_2_a4
I. V. Kolesnikova. Two-mode branching extremals of smooth functionals with homogeneous features of the sixth order in minima points. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 2, pp. 25-30. http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a4/