Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2009_9_2_a4, author = {I. V. Kolesnikova}, title = {Two-mode branching extremals of smooth functionals with homogeneous features of the sixth order in minima points}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {25--30}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a4/} }
TY - JOUR AU - I. V. Kolesnikova TI - Two-mode branching extremals of smooth functionals with homogeneous features of the sixth order in minima points JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2009 SP - 25 EP - 30 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a4/ LA - ru ID - ISU_2009_9_2_a4 ER -
%0 Journal Article %A I. V. Kolesnikova %T Two-mode branching extremals of smooth functionals with homogeneous features of the sixth order in minima points %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2009 %P 25-30 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a4/ %G ru %F ISU_2009_9_2_a4
I. V. Kolesnikova. Two-mode branching extremals of smooth functionals with homogeneous features of the sixth order in minima points. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 2, pp. 25-30. http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a4/
[1] Izyumov Yu. A., Syromyatnikov V. I., Fazovye perekhody i simmetriya kristallov, Nauka, M., 1984, 247 pp.
[2] Shirokov V. B., Yuzyuk Yu. I., Dkhil B., Lemanov V. V., “Fenomenologicheskoe opisanie fazovykh perekhodov v tonkikh plenkakh V.N. $BaTiO_3$”, Fizika tverdogo tela, 50:5 (2008), 889–892 | MR
[3] Darinskii B. M., Sapronov Yu. I., Tsarev S. L., “Bifurkatsii ekstremalei fredgolmovykh funktsionalov”, Sovremennaya matematika. Fundamentalnye napravleniya, 12, MAI, M., 2004, 3–140 | MR | Zbl
[4] Krasnoselskii M. A., Bobylev N. A., Mukhamadiev E. M., “Ob odnoi skheme issledovaniya vyrozhdennykh ekstremalei funktsionalov klassicheskogo variatsionnogo ischisleniya”, Dokl. AN SSSR, 240:3 (1978), 530–533 | MR
[5] Darinskii M. M., Sapronov Yu. I., Shalimov V. V., “Phase transitions in crystals characterized by polarization and deformation components of the order parameter”, Ferroelectrics, 265 (2002), 31–42 | DOI
[6] Darinskii B. M., Dyachenko A. A., Sapronov Yu. I., Chaplygin M. N., “Fazovye perekhody v domennykh granitsakh ferroikov”, Izvestiya RAN. Ser. fizicheskaya, 768:7 (2004), 920–926
[7] Borisovich Yu. G., Zvyagin V. G., Sapronov Yu. I., “Nelineinye fredgolmovy otobrazheniya i teoriya Lere–Shaudera”, Uspekhi mat. nauk, 32:4 (1977), 3–54 | MR | Zbl
[8] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. Klassifikatsiya kriticheskikh tochek kaustik i volnovykh frontov, Nauka, M., 1982, 304 pp. | MR
[9] Breker T., Lander L., Differentsiruemye rostki i katastrofy, Mir, M., 1977, 208 pp.
[10] Sapronov Yu. I., Khussain M. A., “Uglovye osobennosti gladkikh funktsionalov v zadachakh o progibakh uprugikh balok i zarozhdenii nelineinykh voln”, Trudy Voronezh. zimn. mat. shkoly, Izd-vo Voronezh. un-ta, Voronezh, 2004, 155–167
[11] Postnikov M. M., Vvedenie v teoriyu Morsa, Nauka, M., 1971, 568 pp. | MR