Two-mode branching extremals of smooth functionals with homogeneous features of the sixth order in minima points
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 2, pp. 25-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

A description of Fredholm functionals extremal distribution, bifurcating from minima points with two-dimensional degeneration and features of the sixth order is given. The main illustrating example is the problem of heterogeneous crystal ferroelectric phases branching (based on helical model). We use modified Lyapunov–Schmidt method (reduction to key function on $\mathbb R^n$), equipped with the elements of singularities theory of smooth functions. Emphasis is put on key function with square symmetry.
@article{ISU_2009_9_2_a4,
     author = {I. V. Kolesnikova},
     title = {Two-mode branching extremals of smooth functionals with homogeneous features of the sixth order in minima points},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {25--30},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a4/}
}
TY  - JOUR
AU  - I. V. Kolesnikova
TI  - Two-mode branching extremals of smooth functionals with homogeneous features of the sixth order in minima points
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2009
SP  - 25
EP  - 30
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a4/
LA  - ru
ID  - ISU_2009_9_2_a4
ER  - 
%0 Journal Article
%A I. V. Kolesnikova
%T Two-mode branching extremals of smooth functionals with homogeneous features of the sixth order in minima points
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2009
%P 25-30
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a4/
%G ru
%F ISU_2009_9_2_a4
I. V. Kolesnikova. Two-mode branching extremals of smooth functionals with homogeneous features of the sixth order in minima points. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 2, pp. 25-30. http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a4/

[1] Izyumov Yu. A., Syromyatnikov V. I., Fazovye perekhody i simmetriya kristallov, Nauka, M., 1984, 247 pp.

[2] Shirokov V. B., Yuzyuk Yu. I., Dkhil B., Lemanov V. V., “Fenomenologicheskoe opisanie fazovykh perekhodov v tonkikh plenkakh V.N. $BaTiO_3$”, Fizika tverdogo tela, 50:5 (2008), 889–892 | MR

[3] Darinskii B. M., Sapronov Yu. I., Tsarev S. L., “Bifurkatsii ekstremalei fredgolmovykh funktsionalov”, Sovremennaya matematika. Fundamentalnye napravleniya, 12, MAI, M., 2004, 3–140 | MR | Zbl

[4] Krasnoselskii M. A., Bobylev N. A., Mukhamadiev E. M., “Ob odnoi skheme issledovaniya vyrozhdennykh ekstremalei funktsionalov klassicheskogo variatsionnogo ischisleniya”, Dokl. AN SSSR, 240:3 (1978), 530–533 | MR

[5] Darinskii M. M., Sapronov Yu. I., Shalimov V. V., “Phase transitions in crystals characterized by polarization and deformation components of the order parameter”, Ferroelectrics, 265 (2002), 31–42 | DOI

[6] Darinskii B. M., Dyachenko A. A., Sapronov Yu. I., Chaplygin M. N., “Fazovye perekhody v domennykh granitsakh ferroikov”, Izvestiya RAN. Ser. fizicheskaya, 768:7 (2004), 920–926

[7] Borisovich Yu. G., Zvyagin V. G., Sapronov Yu. I., “Nelineinye fredgolmovy otobrazheniya i teoriya Lere–Shaudera”, Uspekhi mat. nauk, 32:4 (1977), 3–54 | MR | Zbl

[8] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. Klassifikatsiya kriticheskikh tochek kaustik i volnovykh frontov, Nauka, M., 1982, 304 pp. | MR

[9] Breker T., Lander L., Differentsiruemye rostki i katastrofy, Mir, M., 1977, 208 pp.

[10] Sapronov Yu. I., Khussain M. A., “Uglovye osobennosti gladkikh funktsionalov v zadachakh o progibakh uprugikh balok i zarozhdenii nelineinykh voln”, Trudy Voronezh. zimn. mat. shkoly, Izd-vo Voronezh. un-ta, Voronezh, 2004, 155–167

[11] Postnikov M. M., Vvedenie v teoriyu Morsa, Nauka, M., 1971, 568 pp. | MR