Modeling of motion of the complex elastic system
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 2, pp. 74-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of article is a receipt of mathematical model of motion of the complex elastic system. The normal modes and frequencies are searched by decomposition of vibrations on the modes of stationary elements of the system. It allows to transform partial differential equations of motion in ordinary differential equations. The motion of a space craft which consists of elastic large size elements (solar panels) is modeled.
@article{ISU_2009_9_2_a11,
     author = {M. V. Borisov and A. A. Avramenko},
     title = {Modeling of motion of the complex elastic system},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {74--82},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a11/}
}
TY  - JOUR
AU  - M. V. Borisov
AU  - A. A. Avramenko
TI  - Modeling of motion of the complex elastic system
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2009
SP  - 74
EP  - 82
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a11/
LA  - ru
ID  - ISU_2009_9_2_a11
ER  - 
%0 Journal Article
%A M. V. Borisov
%A A. A. Avramenko
%T Modeling of motion of the complex elastic system
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2009
%P 74-82
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a11/
%G ru
%F ISU_2009_9_2_a11
M. V. Borisov; A. A. Avramenko. Modeling of motion of the complex elastic system. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 2, pp. 74-82. http://geodesic.mathdoc.fr/item/ISU_2009_9_2_a11/

[1] Khoroshilov V. S., “Mekhanicheskie modeli dvizheniya kosmicheskogo apparata s solnechnoi batareei”, Izv. AN SSSR. MTT, 1978, no. 5, 18–24

[2] Dokuchaev L. V., Klimov O. P., “Ob ustoichivosti vrascheniya tverdogo tela s gibkimi elementami”, Izv. AN SSSR. MTT, 1982, no. 5, 10–15

[3] Nabiullin M. K., Statsionarnoe dvizhenie i ustoichivost uprugikh sputnikov, Nauka, Sibir. otd-nie, Novosibirsk, 1990, 216 pp. | MR | Zbl

[4] Mirovich L., Kvinn R. D., “Uravnenie dvizheniya manevriruyuschego kosmicheskogo apparata nezhestkoi konstruktsii”, Aerokosmicheskaya tekhnika, 1988, no. 6, 82–96

[5] Ganiev R. F., Kovalchuk P. S., Dinamika sistem tverdykh i uprugikh tel. Rezonansnye yavleniya pri nelineinykh kolebaniyakh, Mashinostroenie, M., 1980, 208 pp.

[6] Borisov M. V., “Primenenie metoda Releya–Rittsa dlya nakhozhdeniya sobstvennykh chastot i form kolebanii slozhnoi uprugoi sistemy”, Studencheskaya nauka aerokosmicheskomu kompleksu: Sb. tr. stud. i asp. fak. letatelnykh apparatov, 7, Samara, 2001, 10–16

[7] Lantsosh K., Variatsionnye printsipy mekhaniki, Mir, M., 1965, 408 pp.

[8] Timoshenko S. P., Yang D. Kh., Uiver U., Kolebaniya v inzhenernom dele, Mashinostroenie, M., 1985, 472 pp.

[9] Kruglov G. E., Analiticheskoe proektirovanie mekhanicheskikh sistem, Samar. gos. aerokosm. un-t im. akad. im. S. P. Koroleva, Samara, 2001, 132 pp.