Mode mixity parameters for mathematical crack type
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 1, pp. 77-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for calculating the elastic-plastic stress intensity factors for full range of mixed mode loading from tensile to shear crack is suggested. The state of arbitrary oriented straight-line crack in form of mathematical notch under biaxial loading is considered. The solution is based on a combination of both the compatibility strain equation and the Airy stress function with its derivatives. The elastic-plastic material behavior is represented by the Ramberg–Osgood model. On the base of obtaining results the influence of both mode mixity and material plastic properties, describing by strain hardening exponent, on the elastic-plastic stress intensity factors is stated.
@article{ISU_2009_9_1_a9,
     author = {V. N. Shlyannikov and S. Yu. Kislova},
     title = {Mode mixity parameters for mathematical crack type},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {77--84},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2009_9_1_a9/}
}
TY  - JOUR
AU  - V. N. Shlyannikov
AU  - S. Yu. Kislova
TI  - Mode mixity parameters for mathematical crack type
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2009
SP  - 77
EP  - 84
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2009_9_1_a9/
LA  - ru
ID  - ISU_2009_9_1_a9
ER  - 
%0 Journal Article
%A V. N. Shlyannikov
%A S. Yu. Kislova
%T Mode mixity parameters for mathematical crack type
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2009
%P 77-84
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2009_9_1_a9/
%G ru
%F ISU_2009_9_1_a9
V. N. Shlyannikov; S. Yu. Kislova. Mode mixity parameters for mathematical crack type. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 9 (2009) no. 1, pp. 77-84. http://geodesic.mathdoc.fr/item/ISU_2009_9_1_a9/

[1] Hutchinson J. W., “Singular behaviour at the end of a tensile crack in a hardening material”, J. of the Mechanics and Physic of Solids, 16 (1968), 13–31 | DOI | Zbl

[2] Rice J. R., Rosengren G. F., “Plane strain deformation near a crack tip in power law hardening material”, J. of the Mechanics and Physic of Solids, 16 (1968), 1–12 | DOI | Zbl

[3] Shih C. F., “Small-scale yielding analysis of mixed plane strain crack problem”, Fracture Analysis, ASTM STP, 560, 1974, 187–210

[4] Shlyannikov V. N., Sakhabutdinov J. M., “Evaluation of the elastic-plastic mixity parameters on the base of different crack propagation criteria. Communication 2. Solution and results”, Strength of Materials, 4 (2005), 46–63

[5] Shlyannikov V. N., Dolgorukov V. A., “Analysis of the crack propagation under biaxial cyclic load taking into account their orientation”, Failure analysis – theory and practice, v. 2, EMAS, Hungary, 1988, 1095–1103