Morphismes based on compatible tolerances of finite automata
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 4, pp. 80-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is suggested a method of a construction with the help of some triple of tolerances defined on the sets of states, input and output symbols of an finite definite automaton an another automaton which is connected with the original automaton by a certain morphism. Considered construction generalizes the known method of finding of the homomorphic images of an automaton with the help of a triple of equivalences, which satisfies to the certain conditions.
@article{ISU_2008_8_4_a9,
     author = {I. P. Mangusheva},
     title = {Morphismes based on compatible tolerances of finite automata},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {80--90},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a9/}
}
TY  - JOUR
AU  - I. P. Mangusheva
TI  - Morphismes based on compatible tolerances of finite automata
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2008
SP  - 80
EP  - 90
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a9/
LA  - ru
ID  - ISU_2008_8_4_a9
ER  - 
%0 Journal Article
%A I. P. Mangusheva
%T Morphismes based on compatible tolerances of finite automata
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2008
%P 80-90
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a9/
%G ru
%F ISU_2008_8_4_a9
I. P. Mangusheva. Morphismes based on compatible tolerances of finite automata. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 4, pp. 80-90. http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a9/

[1] Bogomolov A. M., Salii V. I., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, fizmat. lit., M., 1997, 368 pp. | MR | Zbl

[2] Shreider Yu. A., Ravenstvo, skhodstvo, poryadok, Nauka, M., 1971 | MR

[3] Chajda I., “Characterization of Relational Blocks”, Algebra universalis, 10 (1980), 65–69 | DOI | MR | Zbl

[4] Karpov Yu. G., Teoriya avtomatov, Piter, SPb., 2003, 208 pp.

[5] Hartmanis J., Stearns R., Algebraic Structure Theory of Sequential Machines, Prentice-Hall Inc., N.Y., 1966, 213 pp. | MR | Zbl

[6] Mangusheva I. P., “Postroenie reshetki stabilnykh tolerantnostei konechnogo avtomata”, Metody i sistemy tekhnicheskoi diagnostiki, 2, Izd-vo Sarat. un-ta, Saratov, 1981, 106–112

[7] Khrustalev P. M., “Pokrytiya i razbieniya so svoistvom podstanovki v konechnykh avtomatakh”, Metody i sistemy tekhnicheskoi diagnostiki, 2, Izd-vo Sarat. un-ta, Saratov, 1981, 96–106

[8] Dididze Ts. E., “O gomomorfizmakh avtomatov”, Tr. VTs AN Gruz. SSR, 12, no. 1, 1973, 118–131 | MR | Zbl

[9] Ilicheva I. P., Pechenkin V. V., “Kontrol strukturnykh avtomatov po stabilnym otnosheniyam”, Metody i sistemy tekhnicheskoi diagnostiki, 5, Izd-vo Sarat. un-ta, Saratov, 1985, 35–43