The one-dimensional micropolar theory of elastic rods basic parities construction
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 4, pp. 52-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

The reduction from a three-dimensional problem of the asymmetrical theory of elasticity to one-dimensional by means of splitting a three-dimensional problem on set of two-dimentional and one-dimensional problems is carried out. Kinematic parameters with which it is necessary to involve are specified that together with system Kirchoff differential equations to receive the closed system of the equations of the one-dimensional micropolar theory of cores. Other geometrical sizes are found from parities defining them. Conditions with which should satisfy factors in closing parities are received. The contribution to these parities which introduces the account moment pressure is estimated. For the one-dimensional theory the common decision at presence stiffnesse is specified to symmetry.
@article{ISU_2008_8_4_a7,
     author = {A. A. Iliykhin and D. V. Timoshenko},
     title = {The one-dimensional micropolar theory of elastic rods basic parities construction},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {52--61},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a7/}
}
TY  - JOUR
AU  - A. A. Iliykhin
AU  - D. V. Timoshenko
TI  - The one-dimensional micropolar theory of elastic rods basic parities construction
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2008
SP  - 52
EP  - 61
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a7/
LA  - ru
ID  - ISU_2008_8_4_a7
ER  - 
%0 Journal Article
%A A. A. Iliykhin
%A D. V. Timoshenko
%T The one-dimensional micropolar theory of elastic rods basic parities construction
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2008
%P 52-61
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a7/
%G ru
%F ISU_2008_8_4_a7
A. A. Iliykhin; D. V. Timoshenko. The one-dimensional micropolar theory of elastic rods basic parities construction. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 4, pp. 52-61. http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a7/

[1] Aero E. L., Kuvshinskii E. V., “Osnovnye uravneniya teorii uprugosti sred s vraschatelnym vzaimodeistviem chastits”, FTT, 2:7 (1960), 1399–1409 | MR

[2] Kuvshinskii E. V., Aero E. L., “Kontinualnaya teoriya asimmetricheskoi uprugosti”, FTT, 5:9 (1969), 2591–2598 | MR

[3] Cosserat E., Cosserat F., Théorie des corps deformables, Paris, 1909, vi+226 pp. ; Appendix Chwolson, Traite de Physicue, 2nd ed., Paris, 953–1173 | Zbl

[4] Koiter W. T., “Couple-stresses in the theory of elasticity, I–II”, Proc. Koninkl. Neterland. Akad. Wetensh. B, 67:1 (1964), 17–29 ; 30–44 | MR | Zbl | Zbl

[5] Novatskii V., Teoriya uprugosti, Mir, M., 1975, 872 pp. | MR

[6] Palmov V. A., “Osnovnye uravneniya teorii nesimmetrichnoi uprugosti”, PMM, 28:3 (1964), 401–408 | MR

[7] Nowacki W., Theory of Asymmetric Elasticity, Pergamon-Press, Oxford, N.Y., Toronto et al., 1986, 383 pp. | MR

[8] Toupin R. A., “Theories of elasticity with couple-stress”, Arch. Ration. Mech. Anal., 17:2 (1964), 85–112 | DOI | MR | Zbl

[9] Eringen A. C., “Nonlocal polar field theories”, Continuum Physics, v. 4, Academic Press, N.Y., 1976, 205–268

[10] Eringen A. C., Microcontinuum Field Theories, v. I, Foundations and Solids, Springer-Verlag, Berlin, Heidelberg, N.Y. et al, 1999, 325 pp. | MR | Zbl

[11] Eringen A. C., Microcontinuum Field Theories, v. II, Fluent Media, Springer-Verlag, Berlin, Heidelberg, N.Y. et al., 2001, 342 pp. | Zbl

[12] Ivanova E. A. i dr., “Uchet momentnogo vzaimodeistviya pri raschete izgibnoi zhestkosti nanostruktur”, Dokl. RAN, 391:6 (2003), 764–768

[13] Kitaigorodskii A. I., “Nevalentnye vzaimodeistviya atomov v organicheskikh kristallakh i molekulakh”, UFN, 127:3 (1979), 391–419 | DOI

[14] Lure A. I., Nelineinaya teoriya uprugosti, Nauka, M., 1980, 920 pp. | MR

[15] Ilyukhin A. A., Schepin N. N., “K momentnoi teorii uprugikh sterzhnei”, Izv. vuzov. Severo-Kavkazskii region. Estestvennye nauki, 2001, Spetsvypusk, 92–94