On the distribution of the numbers with binary expansions of a~special type in arithmetic progressions
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 4, pp. 34-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let 2 be the primitive root $\operatorname{mod}p$. Let $N_0$ be a set of natural numbers whose binary expansions contain even numbers of 1. Numbers from $N_0$ are uniformly distributed in arithmetic progressions with the difference $p$.
@article{ISU_2008_8_4_a4,
     author = {A. P. Naumenko},
     title = {On the distribution of the numbers with binary expansions of a~special type in arithmetic progressions},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {34--37},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a4/}
}
TY  - JOUR
AU  - A. P. Naumenko
TI  - On the distribution of the numbers with binary expansions of a~special type in arithmetic progressions
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2008
SP  - 34
EP  - 37
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a4/
LA  - ru
ID  - ISU_2008_8_4_a4
ER  - 
%0 Journal Article
%A A. P. Naumenko
%T On the distribution of the numbers with binary expansions of a~special type in arithmetic progressions
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2008
%P 34-37
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a4/
%G ru
%F ISU_2008_8_4_a4
A. P. Naumenko. On the distribution of the numbers with binary expansions of a~special type in arithmetic progressions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 4, pp. 34-37. http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a4/

[1] Gelfond A. O., “Sur les nombres qui ont des proprietes additives et multiplicatives donnies”, Acta Arith., 13 (1968), 259–265 | MR | Zbl

[2] Aierlend K., Rouzen M., Klassicheskoe vvedenie v sovremennuyu teoriyu chisel, Mir, M., 1987 | MR