Operator integration with an involution having a~power singularity
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 4, pp. 18-33

Voir la notice de l'article provenant de la source Math-Net.Ru

Spectral properties of the integral operator with an involution of special type in the upper limit are studied and an equiconvergence theorem for its generalized eigenfunction expansions is obtained.
@article{ISU_2008_8_4_a3,
     author = {V. V. Kornev and A. P. Khromov},
     title = {Operator integration with an involution having a~power singularity},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {18--33},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a3/}
}
TY  - JOUR
AU  - V. V. Kornev
AU  - A. P. Khromov
TI  - Operator integration with an involution having a~power singularity
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2008
SP  - 18
EP  - 33
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a3/
LA  - ru
ID  - ISU_2008_8_4_a3
ER  - 
%0 Journal Article
%A V. V. Kornev
%A A. P. Khromov
%T Operator integration with an involution having a~power singularity
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2008
%P 18-33
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a3/
%G ru
%F ISU_2008_8_4_a3
V. V. Kornev; A. P. Khromov. Operator integration with an involution having a~power singularity. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 4, pp. 18-33. http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a3/