Operator integration with an involution having a~power singularity
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 4, pp. 18-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

Spectral properties of the integral operator with an involution of special type in the upper limit are studied and an equiconvergence theorem for its generalized eigenfunction expansions is obtained.
@article{ISU_2008_8_4_a3,
     author = {V. V. Kornev and A. P. Khromov},
     title = {Operator integration with an involution having a~power singularity},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {18--33},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a3/}
}
TY  - JOUR
AU  - V. V. Kornev
AU  - A. P. Khromov
TI  - Operator integration with an involution having a~power singularity
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2008
SP  - 18
EP  - 33
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a3/
LA  - ru
ID  - ISU_2008_8_4_a3
ER  - 
%0 Journal Article
%A V. V. Kornev
%A A. P. Khromov
%T Operator integration with an involution having a~power singularity
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2008
%P 18-33
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a3/
%G ru
%F ISU_2008_8_4_a3
V. V. Kornev; A. P. Khromov. Operator integration with an involution having a~power singularity. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 4, pp. 18-33. http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a3/

[1] Khromov A. P., “Ob obraschenii integralnykh operatorov s yadrami, razryvnymi na diagonalyakh”, Mat. zametki, 64:6 (1998), 932–942 | DOI | MR | Zbl

[2] Ilin V. A., “Neobkhodimye i dostatochnye usloviya bazisnosti i ravnoskhodimosti s trigonometricheskim ryadom spektralnykh razlozhenii, II”, Dif. uravneniya, 16:6 (1980), 980–1009 | MR | Zbl

[3] Sedletskii A. M., “Analiticheskie preobrazovaniya Fure i eksponentsialnye aproksimatsii, II”, Sovremennaya matematika. Fundamentalnye napravleniya, 6, Izd-vo MAI, M., 2003, 3–162

[4] Shkalikov A. A., “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Tr. seminara im. I. G. Petrovskogo, 9, 1983, 190–229 | MR | Zbl

[5] Kornev V. V., Khromov A. P., “O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam integralnykh operatorov s yadrami, dopuskayuschimi razryvy proizvodnykh na diagonalyakh”, Mat. sb., 192:10 (2001), 33–50 | DOI | MR | Zbl

[6] Kurdyumov V. P., Khromov A. P., “O bazisakh Rissa iz sobstvennykh funktsii integralnogo operatora s peremennym predelom integrirovaniya”, Mat. zametki, 76:1 (2004), 97–110 | DOI | MR

[7] Khromov A. P., “Integralnye operatory s yadrami, razryvnymi na lomanykh liniyakh”, Mat. sb., 197:11 (2006), 115–142 | DOI | MR | Zbl

[8] Nikiforov A. F., Uvarov V. B., Osnovy teorii spetsialnykh funktsii, Nauka, M., 1974, 303 pp. | MR

[9] Vatson G. N., Teoriya besselevykh funktsii, Izd-vo inostr. lit., M., 1949

[10] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971, 576 pp. | MR

[11] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969, 528 pp. | MR | Zbl

[12] Bellman B., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967, 548 pp. | MR | Zbl

[13] Kuvardina L. P., Khromov A. P., “O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam integralnogo operatora s involyutsiei”, Izv. vuzov. Matematika, 2008, no. 5, 67–76 | MR | Zbl