Spectral sequences of fibre tolerance spaces
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 4, pp. 13-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the theoretical base for the construction of spectral sequences of tolerant exfoliations. Namely, the authors give a number of important qualities of singular cubes in tolerant exfoliations. The fundamental base group operation on the group of fiber homology of tolerant exfoliation theorem is proved. According to the general theory of spectral sequences the first and the second terms of spectral sequence of tolerant exfoliations are got.
@article{ISU_2008_8_4_a2,
     author = {I. A. Klyaeva},
     title = {Spectral sequences of fibre tolerance spaces},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {13--18},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a2/}
}
TY  - JOUR
AU  - I. A. Klyaeva
TI  - Spectral sequences of fibre tolerance spaces
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2008
SP  - 13
EP  - 18
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a2/
LA  - ru
ID  - ISU_2008_8_4_a2
ER  - 
%0 Journal Article
%A I. A. Klyaeva
%T Spectral sequences of fibre tolerance spaces
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2008
%P 13-18
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a2/
%G ru
%F ISU_2008_8_4_a2
I. A. Klyaeva. Spectral sequences of fibre tolerance spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 4, pp. 13-18. http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a2/

[1] Zeeman E. S., The topology of brain and visual perception. The Topology of 3-Manifolds, N.Y., 1962 | MR

[2] Nebaluev S. I., Gomologicheskaya teoriya tolerantnykh prostranstv, Izd-vo Sarat. un-ta, Saratov, 2006

[3] Nebaluev S. I.,Klyaeva I. A., “Tolerantnoe rassloenie prostranstva tolerantnykh putei”, Issledovaniya po algebre, teorii chisel, funktsionalnomu analizu i smezhnym voprosam, 3, Izd-vo Sarat. un-ta, Saratov, 2005, 93–106

[4] Nebaluev S. I.,Klyaeva I. A., “Teoriya punktirovannykh tolerantnykh kubicheskikh singulyarnykh gomologii”, Vestn. Samarsk. gos. un-ta, 7(57), 2007, 134–151

[5] Khu Sy-tszyan, Teoriya gomotopii, Mir, M., 1964