The theorem on equiconvergence for the integral operator on simplest graph with cycle
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 4, pp. 8-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with integral operators on the simplest geometric two-edge graph containing the cycle. The class of integral operators with range of values satisfying continuity condition into internal node of graph is described. The equiconvergence of expansions in eigen- and adjoint functions and trigonometric Fourier series is established.
@article{ISU_2008_8_4_a1,
     author = {M. Sh. Burlutskaya},
     title = {The theorem on equiconvergence for the integral operator on simplest graph with cycle},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {8--13},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a1/}
}
TY  - JOUR
AU  - M. Sh. Burlutskaya
TI  - The theorem on equiconvergence for the integral operator on simplest graph with cycle
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2008
SP  - 8
EP  - 13
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a1/
LA  - ru
ID  - ISU_2008_8_4_a1
ER  - 
%0 Journal Article
%A M. Sh. Burlutskaya
%T The theorem on equiconvergence for the integral operator on simplest graph with cycle
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2008
%P 8-13
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a1/
%G ru
%F ISU_2008_8_4_a1
M. Sh. Burlutskaya. The theorem on equiconvergence for the integral operator on simplest graph with cycle. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 4, pp. 8-13. http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a1/

[1] Burlutskaya M. Sh., Khromov A. P., “O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam funktsionalno-differentsialnogo operatora pervogo poryadka na grafe iz dvukh reber, soderzhaschem tsikl”, Dif. uravneniya, 43:12 (2007), 1597–1605 | MR | Zbl

[2] Khromov A. P., “Teoremy ravnoskhodimosti dlya integro-differentsialnykh i integralnykh operatorov”, Mat. sbornik, 114(156):3 (1981), 378–405 | MR | Zbl

[3] Kornev V. V., Khromov A. P., “O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam integralnykh operatorov s yadrami, dopuskayuschimi razryvy proizvodnykh na diagonalyakh”, Mat. sbornik, 192:10 (2001), 33–50 | DOI | MR | Zbl

[4] Khromov A. P., “Integralnye operatory s yadrami, razryvnymi na lomanykh liniyakh”, Mat. sbornik, 197:11 (2006), 115–142 | DOI | MR | Zbl

[5] Khromov A. P., “Integralnyi operator s periodicheskimi kraevymi usloviyami”, Sovr. metody teorii kraevykh zadach, Materialy Voronezh. vesen. mat. shkoly, Izd-vo VGU, Voronezh, 2008, 225–226

[6] Khromov A. P., “Teorema ravnoskhodimosti dlya integralnogo operatora s peremennym verkhnim predelom integrirovaniya”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza: sb. statei, Izd-vo AFTs, M., 1999, 255–266 | MR

[7] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961, 936 pp. | MR