Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2008_8_4_a1, author = {M. Sh. Burlutskaya}, title = {The theorem on equiconvergence for the integral operator on simplest graph with cycle}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {8--13}, publisher = {mathdoc}, volume = {8}, number = {4}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a1/} }
TY - JOUR AU - M. Sh. Burlutskaya TI - The theorem on equiconvergence for the integral operator on simplest graph with cycle JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2008 SP - 8 EP - 13 VL - 8 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a1/ LA - ru ID - ISU_2008_8_4_a1 ER -
%0 Journal Article %A M. Sh. Burlutskaya %T The theorem on equiconvergence for the integral operator on simplest graph with cycle %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2008 %P 8-13 %V 8 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a1/ %G ru %F ISU_2008_8_4_a1
M. Sh. Burlutskaya. The theorem on equiconvergence for the integral operator on simplest graph with cycle. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 4, pp. 8-13. http://geodesic.mathdoc.fr/item/ISU_2008_8_4_a1/
[1] Burlutskaya M. Sh., Khromov A. P., “O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam funktsionalno-differentsialnogo operatora pervogo poryadka na grafe iz dvukh reber, soderzhaschem tsikl”, Dif. uravneniya, 43:12 (2007), 1597–1605 | MR | Zbl
[2] Khromov A. P., “Teoremy ravnoskhodimosti dlya integro-differentsialnykh i integralnykh operatorov”, Mat. sbornik, 114(156):3 (1981), 378–405 | MR | Zbl
[3] Kornev V. V., Khromov A. P., “O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam integralnykh operatorov s yadrami, dopuskayuschimi razryvy proizvodnykh na diagonalyakh”, Mat. sbornik, 192:10 (2001), 33–50 | DOI | MR | Zbl
[4] Khromov A. P., “Integralnye operatory s yadrami, razryvnymi na lomanykh liniyakh”, Mat. sbornik, 197:11 (2006), 115–142 | DOI | MR | Zbl
[5] Khromov A. P., “Integralnyi operator s periodicheskimi kraevymi usloviyami”, Sovr. metody teorii kraevykh zadach, Materialy Voronezh. vesen. mat. shkoly, Izd-vo VGU, Voronezh, 2008, 225–226
[6] Khromov A. P., “Teorema ravnoskhodimosti dlya integralnogo operatora s peremennym verkhnim predelom integrirovaniya”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza: sb. statei, Izd-vo AFTs, M., 1999, 255–266 | MR
[7] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961, 936 pp. | MR