Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2008_8_3_a0, author = {S. S. Volosivets}, title = {On convergence of {Fourier--Vilenkin} series in $L^p[0,1)$, $0<p\le1$}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {3--9}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2008_8_3_a0/} }
TY - JOUR AU - S. S. Volosivets TI - On convergence of Fourier--Vilenkin series in $L^p[0,1)$, $0 JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2008 SP - 3 EP - 9 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2008_8_3_a0/ LA - ru ID - ISU_2008_8_3_a0 ER -
S. S. Volosivets. On convergence of Fourier--Vilenkin series in $L^p[0,1)$, $0
[1] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha, Nauka, M., 1987 | MR | Zbl
[2] Moricz F., “Walsh–Fourier series with coefficients of generalized bounded variation”, J. Austral. Math. Soc. Ser. A, 47:3 (1989), 458–465 | DOI | MR | Zbl
[3] Moricz F., “On $L^1$-convergence of Walsh–Fourier series. II”, Acta Math. Hung., 58:1–2 (1991), 203–210 | DOI | MR | Zbl
[4] Agaev G. N., Vilenkin N. Ya., Dzhafarli G. M., Rubinshtein A. I., Multiplikativnye sistemy funktsii i garmonicheskii analiz na nul-mernykh gruppakh, Elm, Baku, 1981 | MR
[5] Pal J., Simon P., “On a generalization of the concept of derivative”, Acta Math. Hung., 29:1–2 (1977), 155–164 | DOI | MR | Zbl
[6] Moricz F., “On $L^1$-convergence of Walsh–Fourier series. I”, Rend. Circ. Mat. Palermo. Ser. 2, 38:3 (1989), 411–418 | DOI | MR | Zbl
[7] Chen C. P., “Pointwise convergence of trigonometric series”, J. Austral. Math. Soc. Ser. A, 43:2 (1987), 291–300 | DOI | MR | Zbl
[8] Stanojevic C. V., “Classes of $L^1$-convergence of Fourier and Fourier–Stieltjes series”, Proc. Amer. Math. Soc., 82:2 (1981), 209–215 | DOI | MR | Zbl
[9] Stanojevic C. V., “Tauberian conditions for $L^1$-convergence of Fourier series”, Trans. Amer. Math. Soc., 271:1 (1982), 237–244 | DOI | MR | Zbl