On convergence of Fourier--Vilenkin series in $L^p[0,1)$, $0$
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 3, pp. 3-9

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study convergence a.e. and $L^p$-convergence ($0$) of Fourier–Vilenkin series under some tauberian conditions on Fourier coefficients of a function. In the case of Fourier–Walsh series these results are obtained by F. Moricz.
@article{ISU_2008_8_3_a0,
     author = {S. S. Volosivets},
     title = {On convergence of {Fourier--Vilenkin} series in $L^p[0,1)$, $0<p\le1$},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2008_8_3_a0/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - On convergence of Fourier--Vilenkin series in $L^p[0,1)$, $0
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2008
SP  - 3
EP  - 9
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2008_8_3_a0/
LA  - ru
ID  - ISU_2008_8_3_a0
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T On convergence of Fourier--Vilenkin series in $L^p[0,1)$, $0
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2008
%P 3-9
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2008_8_3_a0/
%G ru
%F ISU_2008_8_3_a0
S. S. Volosivets. On convergence of Fourier--Vilenkin series in $L^p[0,1)$, $0