Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2008_8_2_a1, author = {L. Yu. Kossovich}, title = {Asymptotic methods in dynamics of shells under shock loading}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {12--33}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2008_8_2_a1/} }
TY - JOUR AU - L. Yu. Kossovich TI - Asymptotic methods in dynamics of shells under shock loading JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2008 SP - 12 EP - 33 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2008_8_2_a1/ LA - ru ID - ISU_2008_8_2_a1 ER -
L. Yu. Kossovich. Asymptotic methods in dynamics of shells under shock loading. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 8 (2008) no. 2, pp. 12-33. http://geodesic.mathdoc.fr/item/ISU_2008_8_2_a1/
[1] Kossovich L. Yu., Kaplunov Yu. D., “Asimptoticheskii analiz nestatsionarnykh uprugikh voln v tonkikh obolochkakh vrascheniya pri udarnykh tortsevykh vozdeistviyakh”, Izv. Sarat. un-ta. Novaya ser., 1:2 (2001), 115–128 | MR
[2] Goldenveizer A. L., Teoriya uprugikh tonkikh obolochek, Nauka, M., 1976, 512 pp. | MR
[3] Goldenveizer A. L., Lidskii V. B., Tovstik P. E., Svobodnye kolebaniya tonkikh uprugikh obolochek, Nauka, M., 1979, 384 pp. | MR
[4] Kossovich L. Yu., Nestatsionarnye zadachi teorii uprugikh tonkikh obolochek, Izd-vo Sarat. un-ta, Saratov, 1986, 176 pp.
[5] Kaplunov J. D., “On the quasi-front in two-dimensional shell theories”, C. R. Acad. Sci. Paris. Ser. 2, 313 (1991), 731–736 | Zbl
[6] Kaplunov J. D., Kossovich L. Yu., Nolde E. V., Dynamics of thin walled elastic bodies, Academic Press, San Diego, 1998 | MR | Zbl
[7] Shevtsova Yu. V., “Pogransloi v okrestnosti kvazifronta v tranvsersalno izotropnoi tsilindricheskoi obolochke”, Problemy prochnosti elementov konstruktsii pod deistviem nagruzok i rabochikh sred, Mezhvuz. nauch. sb., Izd-vo SGTU, Saratov, 2000, 114–117
[8] Bazhanova N. S., Kossovich L. Yu., Sukholovskaya M. S., “Nestatsionarnye volny v vyazkouprugikh obolochkakh: model Maksvella”, Izvestiya vuzov. Severokavkazskii region. Estestvennye nauki, 2000, no. 2, 17–24 | MR | Zbl
[9] Nigul U., “Regions of effective aplication of the methods of three-dimensional and two-dimensional analysis of transient stres waves in shells and plates”, Intern. J. Solids and Structures, 54 (1969), 607–627 | DOI
[10] Kaplunov Yu. D., Kossovich L. Yu., “Asimptoticheskaya model dlya vychisleniya dalnego polya volny Releya v sluchae uprugoi poluploskosti”, Dokl. AN, 395:4 (2004), 482–484 | MR
[11] Kaplunov J., Kossovich L., Zakharov A., “An explicit asymptotic model for the Bleustein–Gulyaev wave”, C. R. Mecanique, 332 (2004), 487–492 | DOI | Zbl
[12] Kossovich L. Yu., Kushekkaliev A. N., “Pole Releya v beskonechnom uprugom sloe”, Matematika, mekhanika: Sb. nauch. tr., 5, Izd-vo Sarat. un-ta, Saratov, 2004, 159–161
[13] Kovalev V. A., Kossovich L. Yu., Taranov O. V., “Pole Releya v zadache Lemba dlya tsilindricheskoi obolochki”, Izvestiya vuzov. Severo-Kavkazskii region. Estestvennye nauki., 2004, Spetsvypusk, 52–54
[14] Kovalev V. A., Kossovich L. Yu., Taranov O. V., “Dalnee pole volny Releya dlya uprugoi polupolosy pri deistvii tortsevoi nagruzki”, Izvestiya RAN. MTT, 2005, no. 5, 89–96 | MR
[15] Kushekkaliev A. N., “Reshenie zadach o rasprostranenii voln v transversalno-izotropnoi tsilindricheskoi obolochke pri normalnykh vozdeistviyakh”, Mekhanika deformiruemykh sred, 14, Izd-vo Sarat. un-ta, Saratov, 2002, 106–115
[16] Kushekkaliev A. N., “Volny tipa Releya v polubeskonechnoi plastine pri normalnom vozdeistvii poperechnogo tipa”, Mekhanika deformiruemykh sred, 15, Izd-vo Sarat. un-ta, Saratov, 2004, 66–73
[17] Kossovich L. Yu., Kushekkaliev A. N., “Analiz priblizhenii v zadache Lemba dlya beskonechnogo uprugogo sloya”, Izvestiya vuzov. Severo-Kavkazskii region. Estestvennye nauki, 2003, no. 2, 10–22
[18] Kossovich L. Yu., Kushekkaliev A. N., “Raschlenenie nestatsionarnogo NDS v zadache Lemba dlya beskonechnogo sloya na sostavlyayuschie s raznymi pokazatelyami izmenyaemosti”, Tr. III Vserossiiskoi konferentsii po teorii uprugosti s mezhdunarodnym uchastiem, Rostov n/D, 2003, 232–234
[19] Kovalev V. A., Taranov O. V., “Raschlenenie nestatsionarnogo NDS tsilindricheskikh obolochek pri udarnykh tortsevykh vozdeistviyakh normalnogo tipa”, Smeshannye zadachi mekhaniki deformirovannogo tela, Materialy V Ros. konf. s mezhdunarodnym uchastiem, Izd-vo Sarat. un-ta, Saratov, 2005, 191–193
[20] Kirillova I. V., “Oblasti soglasovaniya pogransloya i korotkovolnovogo vysokochastotnogo priblizheniya”, Matematicheskoe modelirovanie i upravlenie v tekhnicheskikh sistemakh, Sb. trudov, SGAU, Saratov, 1998, 3–11 | MR
[21] Novozhilov V. V., Slepyan L. I., “O printsipe Sen-Venana v dinamike sterzhnei”, PMM, 29:2 (1965), 261–281 | MR | Zbl
[22] Slepyan L. I., Nestatsionarnye uprugie volny, Sudostroenie, L., 1972, 374 pp.
[23] Gusein-Zade M. I., “Ob usloviyakh suschestvovaniya zatukhayuschikh reshenii ploskoi zadachi teorii uprugosti dlya polupolosy”, Prikl. mat. i mekh., 29:2 (1965), 393–399 | MR | Zbl
[24] Gusein-Zade M. I., “O neobkhodimykh i dostatochnykh usloviyakh suschestvovaniya zatukhayuschikh reshenii ploskoi zadachi teorii uprugosti dlya polupolosy”, Prikl. mat. i mekh., 29:4 (1965), 752–760 | MR | Zbl
[25] Kovalev V. A., Taranov O. V., “Analiz tochnogo i priblizhennogo resheniya dlya pogransloya v okrestnosti uslovnogo fronta poverkhnostnoi volny Releya v uprugoi polupolose”, Vestnik SamGU. Estestvennonauchnaya ser., 6(56) (2007), 57–60