Shape-preserving linear n-width of unit balls in $C[0,1]$
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 7 (2007) no. 1, pp. 33-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D^k$, $k$ is a natural number or zero, be the $k$-th differential operator, defined in $C^k(X)$, $X=[0,1]$, and let $C$ be a cone in $C^k(X)$. Let us denote $\delta_n^k(A,C)_{C(X)}:=\inf_{L_n(C)\subset C}\sup_{f\in A}\|D^kf-D^kL_nf\|_{C(X)}$ linear relative $n$-width of set $A\subset C^k(X)$ in $C(X)$ for $D^k$ with constraint $C$. In this paper we estimate linear relative $n$-width of some balls in $C(X)$ for $D^k$ with constraint $C=\{f\in C^k(X):D^kf\ge0\}$.
@article{ISU_2007_7_1_a6,
     author = {S. P. Sidorov},
     title = {Shape-preserving linear n-width of unit balls in $C[0,1]$},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {33--39},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a6/}
}
TY  - JOUR
AU  - S. P. Sidorov
TI  - Shape-preserving linear n-width of unit balls in $C[0,1]$
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2007
SP  - 33
EP  - 39
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a6/
LA  - ru
ID  - ISU_2007_7_1_a6
ER  - 
%0 Journal Article
%A S. P. Sidorov
%T Shape-preserving linear n-width of unit balls in $C[0,1]$
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2007
%P 33-39
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a6/
%G ru
%F ISU_2007_7_1_a6
S. P. Sidorov. Shape-preserving linear n-width of unit balls in $C[0,1]$. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 7 (2007) no. 1, pp. 33-39. http://geodesic.mathdoc.fr/item/ISU_2007_7_1_a6/

[1] Shisha O., “Monotone approximation”, Pacific J. Math., 15:2 (1965), 667–671 | DOI | MR | Zbl

[2] Lorentz G., Zeller K., “Monotone approximation by algebraic polynomials”, Trans. Amer. Soc., 149:1 (1970), 1–18 | DOI | MR | Zbl

[3] Shvedov A., “Komonotonnaya polinomialnaya approksimatsiya funktsii”, Dokl. Akad. nauk SSSR, 250:1 (1980), 39–42 | MR

[4] Newman D. J., “Efficient comonotone approximation”, J. Approx. Theory, 25 (1979), 189–192 | DOI | MR | Zbl

[5] Beatson R. K., Leviatan D., “On comonotone approximation”, Canad. Math. Bull., 26 (1983), 220–224 | DOI | MR | Zbl

[6] Kolmogorov A. N., “Uber die besste annäherung von funktionen einer gegeben funktionklassen”, Ann. of Math., 37 (1936), 107–110 | DOI | MR | Zbl

[7] Konovalov V. N., “Otsenki diametrov tipa Kolmogorova dlya klassov differentsiruemykh periodicheskikh funktsii”, Mat. zametki, 35 (1984), 369–380 | MR | Zbl

[8] Konovalov V. N., Leviatan D., “Shape-preserving widths of weighted Sobolev-type classes of positive, monotone and convex functions on finite interval”, Constr. Approx., 19:1 (2002), 23–58 | DOI | MR

[9] Tikhomirov V. M., “Poperechniki mnozhestv v funktsionalnom prostranstve i teoriya nailuchshikh priblizhenii”, Uspekhi mat. nauk, 15:3 (1960), 81–120 | MR | Zbl

[10] F. J. Muñoz Delgado V. Ramírez-González D. C.-M., “Qualitative Korovkin-type results on conservative approximation”, J. of Approx. Theory, 98 (1998), 23–58

[11] Sidorov S. P., “On the order of approximation by linear shape preserving operators of finite rank”, East J. on Approx., 7:1 (2001), 1–8 | MR | Zbl

[12] Videnskii V. S., “Ob odnom tochnom neravenstve dlya lineinykh polozhitelnykh operatorov konechnogo ranga”, Dokl. AN TadzhSSR, 24:12 (1981), 715–717 | MR

[13] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976 | MR