Exact orders of errors in smooth functions approximations
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 6 (2006) no. 1, pp. 45-57

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper exact order estimations of errors in uniform metric approximation of smooth function and its derivatives over several classes are obtained in cases when the function is defined precisely or using its $\delta$-approximation $f_\delta(x)$ in $L_2 [a,b]$ metric. Integral operators with polynomial finite kernels are considered as approximate one.
@article{ISU_2006_6_1_a5,
     author = {E. V. Shishkova},
     title = {Exact orders of errors in smooth functions approximations},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {45--57},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2006_6_1_a5/}
}
TY  - JOUR
AU  - E. V. Shishkova
TI  - Exact orders of errors in smooth functions approximations
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2006
SP  - 45
EP  - 57
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2006_6_1_a5/
LA  - ru
ID  - ISU_2006_6_1_a5
ER  - 
%0 Journal Article
%A E. V. Shishkova
%T Exact orders of errors in smooth functions approximations
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2006
%P 45-57
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2006_6_1_a5/
%G ru
%F ISU_2006_6_1_a5
E. V. Shishkova. Exact orders of errors in smooth functions approximations. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 6 (2006) no. 1, pp. 45-57. http://geodesic.mathdoc.fr/item/ISU_2006_6_1_a5/