Exact orders of errors in smooth functions approximations
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 6 (2006) no. 1, pp. 45-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper exact order estimations of errors in uniform metric approximation of smooth function and its derivatives over several classes are obtained in cases when the function is defined precisely or using its $\delta$-approximation $f_\delta(x)$ in $L_2 [a,b]$ metric. Integral operators with polynomial finite kernels are considered as approximate one.
@article{ISU_2006_6_1_a5,
     author = {E. V. Shishkova},
     title = {Exact orders of errors in smooth functions approximations},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {45--57},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2006_6_1_a5/}
}
TY  - JOUR
AU  - E. V. Shishkova
TI  - Exact orders of errors in smooth functions approximations
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2006
SP  - 45
EP  - 57
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2006_6_1_a5/
LA  - ru
ID  - ISU_2006_6_1_a5
ER  - 
%0 Journal Article
%A E. V. Shishkova
%T Exact orders of errors in smooth functions approximations
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2006
%P 45-57
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2006_6_1_a5/
%G ru
%F ISU_2006_6_1_a5
E. V. Shishkova. Exact orders of errors in smooth functions approximations. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 6 (2006) no. 1, pp. 45-57. http://geodesic.mathdoc.fr/item/ISU_2006_6_1_a5/

[1] Khromova G. V., “O differentsirovanii funktsii, zadannykh s pogreshnostyu”, Mezhvuz.sb. nauch. tr., Differentsialnye uravneniya i vychislitelnaya matematika, 6, Izd-vo Sarat. un-ta, Saratov, 1984, 53–58

[2] Khromova G. V., “Ob otsenkakh pogreshnosti priblizhennykh reshenii uravnenii pervogo roda”, Dokl. AN, 378:5 (2001), 605–609 | MR | Zbl

[3] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii, Nauka, M., 1977, 508 pp.

[4] Khromova G. V., Shishkova E. V., “O skorosti skhodimosti priblizhenii funktsii vmeste s ee proizvodnoi”, Sb. nauch. tr., Matematika. Mekhanika, 5, Izd-vo Sarat. un-ta, Saratov, 2003, 136–138

[5] Chebyshev P. L., Poln. sobr. soch., v. 1, Izd-vo Akademii Nauk SSSR, M.–L., 1946, 433 pp.

[6] Khromova G. V., “O verkhnikh granyakh norm funktsii i ikh proizvodnykh”, Vestn. Mosk. un-ta, 1998, no. 2, 45–47 | MR

[7] Shishkova E. V., “O tochnykh po poryadku otsenkakh pogreshnostei v zadache vosstanovleniya funktsii vmeste s ee proizvodnoi”, Mezhvuz. sb. nauch. tr., Issledovaniya po algebre, teorii chisel, funktsionalnomu analizu i smezhnym voprosam, 2, Izd-vo Sarat. un-ta, Saratov, 2003, 99–102

[8] Khromova G. V., Otsenki pogreshnostei priblizhennykh reshenii uravnenii pervogo roda v ravnomernoi metrike, Dis. ... d-ra fiz.-mat. nauk, Saratov, 1998, 237 pp.

[9] Khromova G. V., “Zadacha vosstanovleniya i uravneniya pervogo roda”, Mezhvuz. sb. nauch. tr., v. 1, Differentsialnye uravneniya i vychisl. matematika, 6, Izd-vo Sarat. un-ta, Saratov, 1976, 83–87 | MR

[10] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya nelineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978