Multivariate $q$-integral $p$-modules and criterion of the generalized differentiability
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 6 (2006) no. 1, pp. 37-45

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article in terms of $L_q$-norm the performance of anisotropic spaces of S. L. Sobolev in space $L_p$ is given. As by one part of numbers probably inequality $p_i>1$, and on another — $p_i=1$ the analog of the theorem of F. Rissa and Hardy–Littlwood is represented in a combined aspect. More common derivation, regular by Schwarz which only in part of variables is Sobolev's also is considered.
@article{ISU_2006_6_1_a4,
     author = {L. V. Sakhno},
     title = {Multivariate $q$-integral $p$-modules and criterion of the generalized differentiability},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {37--45},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2006_6_1_a4/}
}
TY  - JOUR
AU  - L. V. Sakhno
TI  - Multivariate $q$-integral $p$-modules and criterion of the generalized differentiability
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2006
SP  - 37
EP  - 45
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2006_6_1_a4/
LA  - ru
ID  - ISU_2006_6_1_a4
ER  - 
%0 Journal Article
%A L. V. Sakhno
%T Multivariate $q$-integral $p$-modules and criterion of the generalized differentiability
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2006
%P 37-45
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2006_6_1_a4/
%G ru
%F ISU_2006_6_1_a4
L. V. Sakhno. Multivariate $q$-integral $p$-modules and criterion of the generalized differentiability. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 6 (2006) no. 1, pp. 37-45. http://geodesic.mathdoc.fr/item/ISU_2006_6_1_a4/