Overtones of oscillatory Boolean matrices
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 6 (2006) no. 1, pp. 29-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a functioning property of a system with a finite set of elements and with different kinds of Boolean binary relations on it. We also construct the square matrices over arbitrary Boolean algebra which determine some Boolean binary relation and generate a cyclic semigroup with the maximum index and period. The looping of the system with a finite set of elements called an oscillator, is accompanied by appearing of subsequences (overtones) in a sequence of elements on the main diagonal of powers of a relevant Boolean matrix. Examples of such overtones of Boolean matrices of small sizes are shown in the paper.
@article{ISU_2006_6_1_a3,
     author = {V. B. Poplavski},
     title = {Overtones of oscillatory {Boolean} matrices},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {29--37},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2006_6_1_a3/}
}
TY  - JOUR
AU  - V. B. Poplavski
TI  - Overtones of oscillatory Boolean matrices
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2006
SP  - 29
EP  - 37
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2006_6_1_a3/
LA  - ru
ID  - ISU_2006_6_1_a3
ER  - 
%0 Journal Article
%A V. B. Poplavski
%T Overtones of oscillatory Boolean matrices
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2006
%P 29-37
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2006_6_1_a3/
%G ru
%F ISU_2006_6_1_a3
V. B. Poplavski. Overtones of oscillatory Boolean matrices. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 6 (2006) no. 1, pp. 29-37. http://geodesic.mathdoc.fr/item/ISU_2006_6_1_a3/

[1] Luce R. D., “A note on Boolean matrix theory”, Proc. Amer. Math. Soc., 3 (1952), 382–388 | DOI | MR | Zbl

[2] Give'on Y., “Lattice matrices”, Inform. and Control., 7:4 (1964), 477–484 | DOI | MR | Zbl

[3] Kim Ki Hang, Boolean matrix theory and applications, Pure and Applied Mathematics, 70, Marcel Dekker, Inc., N.Y.–Basel, 1982, xiv+425 pp. | MR | Zbl

[4] Rosenblatt D., “On the graphs and asymptotic forms of finite Boolean relation matrices and stochastic matrices”, Naval Res. Logist. Quart., 4 (1957), 151–167 | DOI | MR

[5] Li Q., Shao J., “The index set problem for Boolean (or nonnegative) matrices”, Discrete Math., 123:1–3 (1993), 75–92 | MR | Zbl

[6] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, v. 1, Mir, M., 1972, 286 pp.

[7] Lalleman Zh., Polugruppy i kombinatornye prilozheniya, Mir, M., 1985, 440 pp.

[8] Hammer P. L., Rudeanu S., Boolean methods in operations research and related areas, Springer, Berlin–N. Y., 1968, xix+329 pp. | MR | Zbl

[9] Lunts A. G., “Prilozhenie matrichnoi bulevskoi algebry k analizu i sintezu releino-kontaktnykh skhem”, Dokl. AN SSSR, 70:3 (1950), 421–423 | MR | Zbl

[10] Rutherford D. E., “Inverses of Boolean matrices”, Proc. Glasg. Math. Assoc., 6 (1963), 49–53 | DOI | MR | Zbl

[11] Wedderburn J. H. M., “Boolean linear associative algebra”, Ann. of Math., 35 (1934), 185–194 | DOI | MR

[12] Schwarz S., “On the semigroup of binary relations on a finite set”, Czech. Math. J., 20(95) (1970), 632–679 | MR | Zbl

[13] Wielandt H., “Unzerlegbare, nichnegativen Matrizen”, Math. Z., 52 (1950), 642–648 | DOI | MR | Zbl

[14] Gregory D. A., Kirkland S. J., Pullmang N. J., “A bound on the exponent of a primitive matrix using Boolean rank”, Linear Algebra Appl., 217 (1995), 101–116 | DOI | MR | Zbl

[15] Poplavskii V. B., “Opredeliteli stepenei bulevykh matrits”, Trudy VI Mezhdunar. konf. «Algebra i teoriya chisel: sovremennye problemy i prilozheniya», Chebyshevckii sbornik, 5, no. 3(11), 2004, 98–111 | MR | Zbl