About the only solution in the problem of the best plural reflection's approximation by algebraic polynomial
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 6 (2006) no. 1, pp. 11-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the proof of the theorem including necessary and sufficient conditions in the problem of the best plural reflection's approximation by algebraic polynomial. In the proof is used several author's were published results and two auxiliary lemmas. The proof is based on the minim ax's problems theory, the approximation's theory by algebraic polynomials of the P.L. Chebyshev and the plural's analysis.
@article{ISU_2006_6_1_a1,
     author = {I. Yu. Vygodchikova},
     title = {About the only solution in the problem of the best plural reflection's approximation by algebraic polynomial},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {11--19},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2006_6_1_a1/}
}
TY  - JOUR
AU  - I. Yu. Vygodchikova
TI  - About the only solution in the problem of the best plural reflection's approximation by algebraic polynomial
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2006
SP  - 11
EP  - 19
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2006_6_1_a1/
LA  - ru
ID  - ISU_2006_6_1_a1
ER  - 
%0 Journal Article
%A I. Yu. Vygodchikova
%T About the only solution in the problem of the best plural reflection's approximation by algebraic polynomial
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2006
%P 11-19
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2006_6_1_a1/
%G ru
%F ISU_2006_6_1_a1
I. Yu. Vygodchikova. About the only solution in the problem of the best plural reflection's approximation by algebraic polynomial. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 6 (2006) no. 1, pp. 11-19. http://geodesic.mathdoc.fr/item/ISU_2006_6_1_a1/

[1] Vygodchikova I. Yu., “O nailuchshem priblizhenii diskretnogo multiotobrazheniya algebraicheskim polinomom”, Sb. nauch. tr., Matematika. Mekhanika, 3, Izd-vo Sarat. un-ta, Saratov, 2001, 25–27

[2] Vygodchikova I. Yu., “Ob algoritme resheniya zadachi o nailuchshem priblizhenii diskretnogo mnogoznachnogo otobrazheniya algebraicheskim polinomom”, Sb. nauch. tr., Matematika. Mekhanika, 4, Izd-vo Sarat. un-ta, Saratov, 2002, 27–31

[3] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972 | MR

[4] Vygodchikova I. Yu., “O krainikh tochkakh mnozhestva reshenii zadachi o nailuchshem priblizhenii mnogoznachnogo otobrazheniya algebraicheskim polinomom”, Sb. nauch. tr., Matematika. Mekhanika, 5, Izd-vo Sarat. un-ta, Saratov, 2003, 15–18