Inverse spectral problem of reconstructing one-dimensional perturbation of integral Volterra operator
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 6 (2006) no. 1, pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

An integral operator representable as the sum of a Volterra operator and one-dimensional one is considered, when the inverse operator for Volterra one is an integro-differential operator of second order. The inverse problem of reconstruction of the one-dimensional item from spectral data provided that the Volterra component is known a priori is investigated. The uniqueness of the solution of the inverse problem is proved and conditions are obtained that are necessary and sufficient for its solvability.
@article{ISU_2006_6_1_a0,
     author = {S. A. Buterin},
     title = {Inverse spectral problem of reconstructing one-dimensional perturbation of integral {Volterra} operator},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2006_6_1_a0/}
}
TY  - JOUR
AU  - S. A. Buterin
TI  - Inverse spectral problem of reconstructing one-dimensional perturbation of integral Volterra operator
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2006
SP  - 3
EP  - 11
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2006_6_1_a0/
LA  - ru
ID  - ISU_2006_6_1_a0
ER  - 
%0 Journal Article
%A S. A. Buterin
%T Inverse spectral problem of reconstructing one-dimensional perturbation of integral Volterra operator
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2006
%P 3-11
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2006_6_1_a0/
%G ru
%F ISU_2006_6_1_a0
S. A. Buterin. Inverse spectral problem of reconstructing one-dimensional perturbation of integral Volterra operator. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 6 (2006) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/ISU_2006_6_1_a0/

[1] Khromov A. P., “Konechnomernye vozmuscheniya volterrovykh operatorov v banakhovom prostranstve”, Differentsialnye uravneniya i vychislitelnaya matematika, 3, Izd-vo Sarat. un-ta, Saratov, 1973, 3–23 | MR

[2] Yurko V. A., Obratnye spektralnye zadachi i ikh prilozheniya, Izd-vo Sarat. ped. in-ta, Saratov, 2001

[3] Yurko V., Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002 | MR | Zbl

[4] Yurko V. A., “Obratnaya zadacha dlya integralnykh operatorov”, Mat. zametki, 37:5 (1985), 690–701 | MR | Zbl

[5] Levinson N., “The inverse Sturm–Liouville problem”, Math. Tidsskr., 13 (1949), 25–30 | MR

[6] Buterin S. A., “O edinstvennosti vosstanovleniya odnomernogo vozmuscheniya operatora svertki”, Matematika. Mekhanika, 4, Izd-vo Sarat. un-ta, Saratov, 2002, 15–18

[7] Buterin S. A., “Neobkhodimye i dostatochnye usloviya razreshimosti obratnoi zadachi dlya odnomernogo vozmuscheniya operatora svertki”, Matematika. Mekhanika, 5, Izd-vo Sarat. un-ta, Saratov, 2003, 8–10 | MR

[8] Khromov A. P., “Konechnomernye vozmuscheniya volterrovykh operatorov: Avtoref. dis. ... d-ra fiz.-mat. nauk”, Mat. zametki, 16:4 (1974), 669–680 | MR | Zbl

[9] Privalov I. I., Vvedenie v teoriyu funktsii kompleksnogo peremennogo, Fizmatgiz, M., 1977