Recovering singular differential pencils with а turning point
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1, pp. 71-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

Second-order pencils of differential equations оп the half-line with turning points are considered. We establish properties of the spectrum and study the inverse spectral problem of recovering coefficients of the pencil from the spectral data.
@article{ISU_2005_5_1_a6,
     author = {V. A. Yurko},
     title = {Recovering singular differential pencils with {\cyra} turning point},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {71--81},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a6/}
}
TY  - JOUR
AU  - V. A. Yurko
TI  - Recovering singular differential pencils with а turning point
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2005
SP  - 71
EP  - 81
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a6/
LA  - en
ID  - ISU_2005_5_1_a6
ER  - 
%0 Journal Article
%A V. A. Yurko
%T Recovering singular differential pencils with а turning point
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2005
%P 71-81
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a6/
%G en
%F ISU_2005_5_1_a6
V. A. Yurko. Recovering singular differential pencils with а turning point. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1, pp. 71-81. http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a6/

[1] Tamarkin J. D., On some problems of the theory of ordinary linear differential equations, Petrograd, 1917

[2] Keldysh M. V., “On eigenvalues and eigenfunctions of some classes of nonselfadjoint equations”, Dokl. Akad. Nauk SSSR, 77 (1951), 11–14 | Zbl

[3] McHugh J., “An historical survey of ordinary linear differential equations with a large parameter and turning points”, Arch. Hist. Exact. Sci., 7 (1970), 277–324 | DOI | MR

[4] Funct. Anal. Appl., 17:2 (1983), 109–128 (English) | DOI | MR | Zbl

[5] Freiling G., “On the completeness and minimality of the derived chains of eigen and associated functions of boundary eigenvalue problems nonlinearly dependent on the parameter”, Results in Math., 14 (1988), 64–83 | DOI | MR | Zbl

[6] Wasow W., Linear turning point theory, Berlin, 1985 | MR

[7] Eberhard W., Freiling G., “An expansion theorem for eigenvalue problems with several turning points”, Analysis, 13 (1993), 301–308 | DOI | MR | Zbl

[8] Beals R., “Indefinite Sturm–Liouville problems and half-range completeness”, J. Diff. Equations, 56:3 (1985), 391–407 | DOI | MR | Zbl

[9] Langer N., Curgus V., “A Krein space approach to symmetric ordinary differential operators with an indefinite weight function”, J. Diff. Equations, 79:1 (1989), 31–61 | DOI | MR | Zbl

[10] Birkhauser, 1986 | MR | Zbl

[11] Utrecht, 1987

[12] Freiling G.. Yurko V. A., Inverse Sturm–Liouville prolems and their applications, N.Y., 2001

[13] Gasymov M. G., Gusejnov G. S., “Determination of diffusion operators according to spectral data”, Dokl. Akad. Nauk Az. SSR, 37:2 (1981), 19–23 | MR | Zbl

[14] Yamamoto M., “Inverse eigenvalue problem for a vibration of a string with viscous drag”, J. Math. Anal. Appl., 152:1 (1990), 20–34 | DOI | MR | Zbl

[15] Khruslov E. Y., Shepelsky D. G., “Inverse scattering method in electromagnetic sounding theory”, Inverse Prolems, 10:1 (1994), 1–37 | DOI | MR | Zbl

[16] Diff. Equations, 33:3 (1997), 388–394 (English) | MR | Zbl

[17] Aktosun T., Klaus M., Mee S. van der, “Inverse scattering in one-dimensional nonconservative media”, Integral Equat. Oper. Theory, 30:3 (1998), 279–316 | DOI | MR | Zbl

[18] Funct. Anal. Appl., 33:3 (1999), 233–235 (English) | DOI | DOI | MR | Zbl

[19] Mathematics, 191:10 (2000), 1561–1586 (English) | DOI | MR | Zbl

[20] Funct. Anal. Appl., 21:2 (1987), 146–148 (English) | DOI | MR | Zbl

[21] Darwish A. A., “On the inverse scattering problem for a generalized Sturm–Liouville differential operator”, Kyungpook Math. J., 29:1 (1989), 87–103 | MR | Zbl

[22] El-Reheem, Zaki F. A., “The inverse scattering problem for some singular Sturm–Liouville operator”, Pure Math. Appl., 8:2–4 (1997), 233–246 | MR | Zbl

[23] Freiling G., Yurko V. A., “Inverse problems for differential equations with turning points”, Inverse Problems, 13 (1997), 1247–1263 | DOI | MR | Zbl

[24] Freiling G., Yurko V. A., “Inverse spectral problems for differential equations on the half-line with turning points”, J. Diff. Equations, 154 (1999), 419–453 | DOI | MR | Zbl

[25] Bennewitz S., “A Paley–Wiener theorem with applications to inverse spectral theory”, Advances in diff. equations and math. physics, Birmingham, AL, 2002, 21–31 ; Contemp. Math., 327, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[26] Yurko V. A., Method of spectral mappings in the inverse problem theory, Inverse and ill-posed problems series, Utrecht, 2002 | MR

[27] Coddington E., Levinson N., Theory of ordinary differential equations, N.Y., 1955

[28] Rykhlov V. S., “Asymptotical formulas for solutions of linear differential systems of the first order”, Results Math., 36:3–4 (1999), 342–353 | DOI | MR | Zbl

[29] Mennicken R., Moeller M., Non-self-adjoint boundary eigenvalue problems, Amsterdam, 2003

[30] AMS Transl. of Math. Monographs, 39, Providence, RI, 1975 (English) | MR | Zbl

[31] Trans. Moscow Math. Soc., 15 (1966) (English) | MR