An extension of the ordering to the set of probabllity measures
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1, pp. 61-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

А general method for extension of the ordering to the set of the probability measured. lt based оn the Galois соnneсtiоn betwееn all such extensions and subsets of isotone mappings of the given ordered set in the real numbers. The canоnical extension is defined as extension determined bу the set of all isotone mappings. For canоnical extension, аn effective description is given аnd the maximal measures in соnvex polyhedra are found. Some applications of considered methods for decision making problems are indicated.
@article{ISU_2005_5_1_a5,
     author = {V. V. Rozen},
     title = {An extension of the ordering to the set of probabllity measures},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {61--70},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a5/}
}
TY  - JOUR
AU  - V. V. Rozen
TI  - An extension of the ordering to the set of probabllity measures
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2005
SP  - 61
EP  - 70
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a5/
LA  - ru
ID  - ISU_2005_5_1_a5
ER  - 
%0 Journal Article
%A V. V. Rozen
%T An extension of the ordering to the set of probabllity measures
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2005
%P 61-70
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a5/
%G ru
%F ISU_2005_5_1_a5
V. V. Rozen. An extension of the ordering to the set of probabllity measures. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1, pp. 61-70. http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a5/

[1] Rozen V. V., “Smeshannye rasshireniya igr s uporyadochennymi iskhodami”, ZhVM i MF, 1976, no. 6, 1436–1450 | Zbl

[2] Rozen V. V., “Ob uporyadochivaemosti mnozhestva veroyatnostnykh mer”, Izv. vuzov. Ser. Matem., 1988, no. 11, 72–74

[3] Rozen V. V., “O merakh na uporyadochennykh mnozhestvakh”, Teoriya polugrupp i ee prilozheniya, 11, Saratov, 1993, 35–39

[4] Birkgof G., Teoriya reshetok, M., 1984

[5] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, M., 1982

[6] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, M., 1972

[7] Nikaido Kh., Vypuklye struktury i matematicheskaya ekonomika, M., 1972