Оп regularity of self-adjoint boundary conditions
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1, pp. 48-61

Voir la notice de l'article provenant de la source Math-Net.Ru

ln this paper we expound the favourabe decision of Кamke's (Камке) hypothesis that self-adjoint boundary conditions are regular and we also establish an analogue of Jordan–Dirichlet theorem оп uniform convergence of trigonometric Fourier series for the case of the expansions in eigen functions of self-adjoint integral operators from the certain class.
@article{ISU_2005_5_1_a4,
     author = {A. M. Minkin and A. P. Khromov},
     title = {{\CYRO}{\cyrp} regularity of self-adjoint boundary conditions},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {48--61},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a4/}
}
TY  - JOUR
AU  - A. M. Minkin
AU  - A. P. Khromov
TI  - Оп regularity of self-adjoint boundary conditions
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2005
SP  - 48
EP  - 61
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a4/
LA  - ru
ID  - ISU_2005_5_1_a4
ER  - 
%0 Journal Article
%A A. M. Minkin
%A A. P. Khromov
%T Оп regularity of self-adjoint boundary conditions
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2005
%P 48-61
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a4/
%G ru
%F ISU_2005_5_1_a4
A. M. Minkin; A. P. Khromov. Оп regularity of self-adjoint boundary conditions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1, pp. 48-61. http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a4/