Rational interpolation processes on several intervals
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1, pp. 34-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

lt is considered the Lagrange interpolation processes such that rational functions with fixed denominators play the role of polynomials vanishing at interpolation nodes. An estimate for Lebesgue constants is obtained for the case of rational functions deviated least from zero on а given system of intervals with maximally possible number of deviation points, and when the matrix of fixed poles is contained in а compact set outside of the system of intervals. V. N. Rusak and G. Min found earlier particular case (for the case of one interval).
@article{ISU_2005_5_1_a3,
     author = {A. L. Lukashov},
     title = {Rational interpolation processes on several intervals},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {34--48},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a3/}
}
TY  - JOUR
AU  - A. L. Lukashov
TI  - Rational interpolation processes on several intervals
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2005
SP  - 34
EP  - 48
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a3/
LA  - ru
ID  - ISU_2005_5_1_a3
ER  - 
%0 Journal Article
%A A. L. Lukashov
%T Rational interpolation processes on several intervals
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2005
%P 34-48
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a3/
%G ru
%F ISU_2005_5_1_a3
A. L. Lukashov. Rational interpolation processes on several intervals. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1, pp. 34-48. http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a3/

[1] Bernshtein S. N., “Ob ogranichenii znachenii mnogochlena $P_n(x)$ stepeni $n$ na vsem otrezke po ego znacheniyam v $n+1$ tochkakh otrezka”, Sobr. soch., V 4 t., v. 2, M., 1952, 107–126 | Zbl

[2] Dzyadyk V. K., Ivanov V. V., “Ob asimptotike i otsenkakh ravnomernykh norm interpolyatsionnykh mnogochlenov Lagranzha po uzlam Chebysheva”, Matem. sb., 104 (1977), 337–351

[3] Turetskii A. Kh., Teoriya interpolirovaniya v zadachakh, v. 1, Minsk, 1968

[4] Turetskii A. Kh., Teoriya interpolirovaniya v zadachakh, v. 2, Minsk, 1977

[5] Privalov A. A., Teoriya interpolirovaniya funktsii, v. 1, 2, Saratov, 1990

[6] Szabados J., Vertesi R., Interpolation of functions, Singapore, 1990

[7] Boyd J. P., “A numerical comparison of seven grids for polynomial interpolation on the interval”, Comp. Math. Appl., 38 (1999), 35–50 | DOI | MR | Zbl

[8] Chen Q., Babushka I., “Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle”, Comput. Methods Appl. Mech. Engrg., 128 (1995), 405–417 | DOI | MR | Zbl

[9] Hesthaven J. S., “From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex”, SIAM J. Numer. Anal., 35 (1998), 655–676 | DOI | MR | Zbl

[10] Mastroianni G., Occorsio D., “Optimal systems of nodes for Lagrange interpolation on bounded intervals: A survey”, J. Comp. Appl. Math., 134 (2001), 325–341 | DOI | MR | Zbl

[11] Kilgore T. A., “A characterization of the Lagrange interpolating projection with minimal Tchebysheff norm”, J. Approx. Theory, 24 (1978), 273–288 | DOI | MR

[12] Boor S. de, Pinkus A., “Proof of the conjectures of Bernstein and Erdos concerning the optimal nodes for polynomial interpolation”, J. Approx. Theory, 24 (1978), 289–303 | DOI | MR | Zbl

[13] Uolsh Dzh. L., Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, M., 1961 | MR

[14] Rusak V. N., “O skhodimosti odnogo obobschennogo interpolyatsionnogo polinoma”, Dokl. AN BSSR, 6 (1962), 209–211 | MR

[15] Rovba E. A., “O ratsionalnoi interpolyatsii funktsii $|x|$”, Izv. AN BSSR. Ser. Fiz.-matem. nauki, 1989, no. 5, 39–46 | MR

[16] Rovba E. A., “Orthogonal systems of rational functions on the segment and quadrature of Gauss-type”, Math. Balk., 13 (1999), 187–198 | MR | Zbl

[17] Starovoitov A. P., O ratsionalnoi interpolyatsii s fiksirovannymi polyusami, Dep. VINITI 22.05.83, No 2735-83, Red. zhurn. “Izv. AN BSSR. Ser. fiz.-matem. nauk”, Minsk, 1983

[18] Min G., “Lagrange interpolation and quadrature formula in rational systems”, J. Approx. Theory, 95 (1998), 123–145 | DOI | MR | Zbl

[19] Damelin S. B., “The weighted Lebesgue constant of Lagrange interpolation for exponential weights on $[-1,1]$”, Acta Math. Hung., 81 (1998), 223–240 | DOI | MR | Zbl

[20] Kubayi D. G., “Bounds for weighted Lebesgue functions for exponential weights”, J. Comp. Appl. Math., 133 (2001), 429–443 | DOI | MR | Zbl

[21] Szabados J., “On some prolems of weighted polynomial approximation and interpolation”, New developments in approximation theory, N.Y., 1999, 315–328 | DOI | MR | Zbl

[22] Vertesi R., “On the Lebesgue function and Lebesgue constant: a tribute to Paul Erdos”, Paul Erdos and its mathematics, Budapest, 2002, 705–728 | MR | Zbl

[23] Bagby T. N., “On interpolation by rational functions”, Duke Math. J., 36 (1969), 95–104 | DOI | MR | Zbl

[24] Bagby T. N., “Rational interpolation with restricted poles”, J. Approx. Theory, 7 (1973), 1–7 | DOI | MR | Zbl

[25] Calle V. de la, Lagomasino G. L., “Convergence of multipoint Pade-type approximants”, J. Approx. Theory, 109 (2001), 257–278 | DOI | MR | Zbl

[26] Gardiner S. J., Pommerenke S., “Balayage properties related to rational interpolation”, Constr. Approx., 18 (2002), 417–426 | DOI | MR | Zbl

[27] Gonchar A. A., Lopes G. L., “O teoreme Markova dlya mnogotochechnykh approksimatsii”, Matem. sb., 105 (1978), 512–524 | MR | Zbl

[28] Beiker Dzh., Greivs-Morris P., Anproksimatsii Pade, M., 1986

[29] Lagomasino (Lopez) G., “Survey on multipoint Pade approximation to Markov type meromorhic functions and asymptotic properties of the orthogonal polynomials generated by them”, Lect. Notes Math., 1171, 1985, 309–316 | DOI | MR | Zbl

[30] Galluci M. A., Jones W. B., “Rational approximations corresponding to Newton series (Newton–Pade approximants)”, J. Approx. Theory, 17 (1976), 366–392 | DOI | MR

[31] Antoulas A. C., Anderson B. D. O., “A summary of recent results on the scalar rational interpolation problem”, Proc. 25th IEEE Conf. Decis. Control (1986), 2187–2188

[32] Baltensperger R., “Some results on linear rational trigonometric interpolation”, Comput. Math. Appl., 43 (2002), 737–746 | DOI | MR | Zbl

[33] Berrut J.-P., “Rational functions for guaranteed and experimentally well-conditioned global interpolation”, Comput. Math. Appl., 15 (1988), 1–16 | DOI | MR | Zbl

[34] Berrut J.-P., Mittelmann N. D., “Rational interpolation through the optimal attachement of poles to the interpolating polynomial”, Numerical Algorithms, 23 (2000), 315–328 | DOI | MR | Zbl

[35] Fournier J.-D., Pindor M., “Rational interpolation from stochastic data: a new Froissarts phenomenon”, Reliable Computing, 6 (2000), 391–409 | DOI | MR | Zbl

[36] Gutknecht M. N., In what sense is the rational interpolation problem well posed?, Consr. Approx., 6 (1990), 437–450 | DOI | MR | Zbl

[37] Nananukul S., Gong W.-B., “Rational interpolation for stochastic DES's: convegence issues”, IEEE Trans. Autom. Control, 44 (1999), 1070–1073 | DOI | MR | Zbl

[38] Ravi M. S., “Geometric methods in rational interpolation theory”, Lin. Alg. Appl., 258 (1997), 159–168 | DOI | MR | Zbl

[39] Henry M. S., Swetits J. J., “Lebesgue and strong unicity constants for Zolotareff polynomials”, Rocky Mount. J. Math., 12 (1982), 547–556 | DOI | MR | Zbl

[40] Lebedev V. I., “Ekstremalnye mnogochleny i metody optimizatsii vychislitelnykh algoritmov”, Matem. sb., 195:210 (2004), 21–66 | DOI | MR | Zbl

[41] Lukashov A. L., “On Chebyshev–Markov rational fractions over several intervals”, J. Approx. Theory, 95 (1998), 333–352 | DOI | MR | Zbl

[42] Lukashov A. L., “Neravenstva dlya proizvodnykh ratsionalnykh funktsii na neskolkikh otrezkakh”, Izv. RAN. Ser. Matem., 68:23 (2004), 115–138 | DOI | MR | Zbl

[43] Ransford T., Potential theory in the complex plane, Cambridge, 1995

[44] Stahl H., Totik V., General orthogonal polynomials, N.Y., 1992 | MR

[45] Peherstorfer F., Steinbauer R., “Strong asymptotics of orthonormal polynomials with the aid of Green's function”, SIAM J. Math. Anal., 32 (2000), 385–402 | DOI | MR | Zbl

[46] Totik V., “Polynomial inverse images and polynomial inequalities”, Acta Math., 187 (2001), 139–160 | DOI | MR | Zbl