Rational interpolation processes on several intervals
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1, pp. 34-48

Voir la notice de l'article provenant de la source Math-Net.Ru

lt is considered the Lagrange interpolation processes such that rational functions with fixed denominators play the role of polynomials vanishing at interpolation nodes. An estimate for Lebesgue constants is obtained for the case of rational functions deviated least from zero on а given system of intervals with maximally possible number of deviation points, and when the matrix of fixed poles is contained in а compact set outside of the system of intervals. V. N. Rusak and G. Min found earlier particular case (for the case of one interval).
@article{ISU_2005_5_1_a3,
     author = {A. L. Lukashov},
     title = {Rational interpolation processes on several intervals},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {34--48},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a3/}
}
TY  - JOUR
AU  - A. L. Lukashov
TI  - Rational interpolation processes on several intervals
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2005
SP  - 34
EP  - 48
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a3/
LA  - ru
ID  - ISU_2005_5_1_a3
ER  - 
%0 Journal Article
%A A. L. Lukashov
%T Rational interpolation processes on several intervals
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2005
%P 34-48
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a3/
%G ru
%F ISU_2005_5_1_a3
A. L. Lukashov. Rational interpolation processes on several intervals. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1, pp. 34-48. http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a3/