Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2005_5_1_a3, author = {A. L. Lukashov}, title = {Rational interpolation processes on several intervals}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {34--48}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a3/} }
TY - JOUR AU - A. L. Lukashov TI - Rational interpolation processes on several intervals JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2005 SP - 34 EP - 48 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a3/ LA - ru ID - ISU_2005_5_1_a3 ER -
A. L. Lukashov. Rational interpolation processes on several intervals. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 5 (2005) no. 1, pp. 34-48. http://geodesic.mathdoc.fr/item/ISU_2005_5_1_a3/
[1] Bernshtein S. N., “Ob ogranichenii znachenii mnogochlena $P_n(x)$ stepeni $n$ na vsem otrezke po ego znacheniyam v $n+1$ tochkakh otrezka”, Sobr. soch., V 4 t., v. 2, M., 1952, 107–126 | Zbl
[2] Dzyadyk V. K., Ivanov V. V., “Ob asimptotike i otsenkakh ravnomernykh norm interpolyatsionnykh mnogochlenov Lagranzha po uzlam Chebysheva”, Matem. sb., 104 (1977), 337–351
[3] Turetskii A. Kh., Teoriya interpolirovaniya v zadachakh, v. 1, Minsk, 1968
[4] Turetskii A. Kh., Teoriya interpolirovaniya v zadachakh, v. 2, Minsk, 1977
[5] Privalov A. A., Teoriya interpolirovaniya funktsii, v. 1, 2, Saratov, 1990
[6] Szabados J., Vertesi R., Interpolation of functions, Singapore, 1990
[7] Boyd J. P., “A numerical comparison of seven grids for polynomial interpolation on the interval”, Comp. Math. Appl., 38 (1999), 35–50 | DOI | MR | Zbl
[8] Chen Q., Babushka I., “Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle”, Comput. Methods Appl. Mech. Engrg., 128 (1995), 405–417 | DOI | MR | Zbl
[9] Hesthaven J. S., “From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex”, SIAM J. Numer. Anal., 35 (1998), 655–676 | DOI | MR | Zbl
[10] Mastroianni G., Occorsio D., “Optimal systems of nodes for Lagrange interpolation on bounded intervals: A survey”, J. Comp. Appl. Math., 134 (2001), 325–341 | DOI | MR | Zbl
[11] Kilgore T. A., “A characterization of the Lagrange interpolating projection with minimal Tchebysheff norm”, J. Approx. Theory, 24 (1978), 273–288 | DOI | MR
[12] Boor S. de, Pinkus A., “Proof of the conjectures of Bernstein and Erdos concerning the optimal nodes for polynomial interpolation”, J. Approx. Theory, 24 (1978), 289–303 | DOI | MR | Zbl
[13] Uolsh Dzh. L., Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, M., 1961 | MR
[14] Rusak V. N., “O skhodimosti odnogo obobschennogo interpolyatsionnogo polinoma”, Dokl. AN BSSR, 6 (1962), 209–211 | MR
[15] Rovba E. A., “O ratsionalnoi interpolyatsii funktsii $|x|$”, Izv. AN BSSR. Ser. Fiz.-matem. nauki, 1989, no. 5, 39–46 | MR
[16] Rovba E. A., “Orthogonal systems of rational functions on the segment and quadrature of Gauss-type”, Math. Balk., 13 (1999), 187–198 | MR | Zbl
[17] Starovoitov A. P., O ratsionalnoi interpolyatsii s fiksirovannymi polyusami, Dep. VINITI 22.05.83, No 2735-83, Red. zhurn. “Izv. AN BSSR. Ser. fiz.-matem. nauk”, Minsk, 1983
[18] Min G., “Lagrange interpolation and quadrature formula in rational systems”, J. Approx. Theory, 95 (1998), 123–145 | DOI | MR | Zbl
[19] Damelin S. B., “The weighted Lebesgue constant of Lagrange interpolation for exponential weights on $[-1,1]$”, Acta Math. Hung., 81 (1998), 223–240 | DOI | MR | Zbl
[20] Kubayi D. G., “Bounds for weighted Lebesgue functions for exponential weights”, J. Comp. Appl. Math., 133 (2001), 429–443 | DOI | MR | Zbl
[21] Szabados J., “On some prolems of weighted polynomial approximation and interpolation”, New developments in approximation theory, N.Y., 1999, 315–328 | DOI | MR | Zbl
[22] Vertesi R., “On the Lebesgue function and Lebesgue constant: a tribute to Paul Erdos”, Paul Erdos and its mathematics, Budapest, 2002, 705–728 | MR | Zbl
[23] Bagby T. N., “On interpolation by rational functions”, Duke Math. J., 36 (1969), 95–104 | DOI | MR | Zbl
[24] Bagby T. N., “Rational interpolation with restricted poles”, J. Approx. Theory, 7 (1973), 1–7 | DOI | MR | Zbl
[25] Calle V. de la, Lagomasino G. L., “Convergence of multipoint Pade-type approximants”, J. Approx. Theory, 109 (2001), 257–278 | DOI | MR | Zbl
[26] Gardiner S. J., Pommerenke S., “Balayage properties related to rational interpolation”, Constr. Approx., 18 (2002), 417–426 | DOI | MR | Zbl
[27] Gonchar A. A., Lopes G. L., “O teoreme Markova dlya mnogotochechnykh approksimatsii”, Matem. sb., 105 (1978), 512–524 | MR | Zbl
[28] Beiker Dzh., Greivs-Morris P., Anproksimatsii Pade, M., 1986
[29] Lagomasino (Lopez) G., “Survey on multipoint Pade approximation to Markov type meromorhic functions and asymptotic properties of the orthogonal polynomials generated by them”, Lect. Notes Math., 1171, 1985, 309–316 | DOI | MR | Zbl
[30] Galluci M. A., Jones W. B., “Rational approximations corresponding to Newton series (Newton–Pade approximants)”, J. Approx. Theory, 17 (1976), 366–392 | DOI | MR
[31] Antoulas A. C., Anderson B. D. O., “A summary of recent results on the scalar rational interpolation problem”, Proc. 25th IEEE Conf. Decis. Control (1986), 2187–2188
[32] Baltensperger R., “Some results on linear rational trigonometric interpolation”, Comput. Math. Appl., 43 (2002), 737–746 | DOI | MR | Zbl
[33] Berrut J.-P., “Rational functions for guaranteed and experimentally well-conditioned global interpolation”, Comput. Math. Appl., 15 (1988), 1–16 | DOI | MR | Zbl
[34] Berrut J.-P., Mittelmann N. D., “Rational interpolation through the optimal attachement of poles to the interpolating polynomial”, Numerical Algorithms, 23 (2000), 315–328 | DOI | MR | Zbl
[35] Fournier J.-D., Pindor M., “Rational interpolation from stochastic data: a new Froissarts phenomenon”, Reliable Computing, 6 (2000), 391–409 | DOI | MR | Zbl
[36] Gutknecht M. N., In what sense is the rational interpolation problem well posed?, Consr. Approx., 6 (1990), 437–450 | DOI | MR | Zbl
[37] Nananukul S., Gong W.-B., “Rational interpolation for stochastic DES's: convegence issues”, IEEE Trans. Autom. Control, 44 (1999), 1070–1073 | DOI | MR | Zbl
[38] Ravi M. S., “Geometric methods in rational interpolation theory”, Lin. Alg. Appl., 258 (1997), 159–168 | DOI | MR | Zbl
[39] Henry M. S., Swetits J. J., “Lebesgue and strong unicity constants for Zolotareff polynomials”, Rocky Mount. J. Math., 12 (1982), 547–556 | DOI | MR | Zbl
[40] Lebedev V. I., “Ekstremalnye mnogochleny i metody optimizatsii vychislitelnykh algoritmov”, Matem. sb., 195:210 (2004), 21–66 | DOI | MR | Zbl
[41] Lukashov A. L., “On Chebyshev–Markov rational fractions over several intervals”, J. Approx. Theory, 95 (1998), 333–352 | DOI | MR | Zbl
[42] Lukashov A. L., “Neravenstva dlya proizvodnykh ratsionalnykh funktsii na neskolkikh otrezkakh”, Izv. RAN. Ser. Matem., 68:23 (2004), 115–138 | DOI | MR | Zbl
[43] Ransford T., Potential theory in the complex plane, Cambridge, 1995
[44] Stahl H., Totik V., General orthogonal polynomials, N.Y., 1992 | MR
[45] Peherstorfer F., Steinbauer R., “Strong asymptotics of orthonormal polynomials with the aid of Green's function”, SIAM J. Math. Anal., 32 (2000), 385–402 | DOI | MR | Zbl
[46] Totik V., “Polynomial inverse images and polynomial inequalities”, Acta Math., 187 (2001), 139–160 | DOI | MR | Zbl